Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Marco Trevisi"'
Autor:
Mauro Velardocchia, Elvio Bonisoli, Antonio Tota, Domenico Lisitano, Genny Paciullo, Marco Trevisi
Publikováno v:
SAE Technical Paper Series.
In a military off-road vehicle, generally designed to operate in an aggressive operating environment, the typical comfort requirements for trucks and passenger cars are revised for robustness, safety and security. An example is the cabin space optimi
Autor:
Francesco Bandello, Enrico Borrelli, Marco Trevisi, Rosangela Lattanzio, Riccardo Sacconi, Giuseppe Querques
Publikováno v:
American Journal of Ophthalmology.
Publikováno v:
IEEE Transactions on Circuits and Systems for Video Technology
Digital.CSIC. Repositorio Institucional del CSIC
instname
idUS. Depósito de Investigación de la Universidad de Sevilla
Digital.CSIC. Repositorio Institucional del CSIC
instname
idUS. Depósito de Investigación de la Universidad de Sevilla
In this paper, we present a new image sensor architecture for fast and accurate compressive sensing (CS) of natural images. Measurement matrices usually employed in CS CMOS image sensors are recursive pseudo-random binary matrices. We have proved tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7938a818571694325947b1363cfe693b
https://surrey.eprints-hosting.org/852474/
https://surrey.eprints-hosting.org/852474/
Publikováno v:
ICECS
This article introduces an adaptive block-based, low-complexity Compressed Sensing (CS) image recovery algorithm that permits to reconstruct a picture from a reduced number of CS measurements with very high accuracy. Our algorithm first detects the r
Autor:
Marco Trevisi, H. C. Bandala, Jorge Fernández-Berni, Ángel Rodríguez-Vázquez, Ricardo Carmona-Galan
Publikováno v:
DATE
Digital.CSIC. Repositorio Institucional del CSIC
instname
idUS. Depósito de Investigación de la Universidad de Sevilla
Digital.CSIC. Repositorio Institucional del CSIC
instname
idUS. Depósito de Investigación de la Universidad de Sevilla
Compressive sampling allows wrapping the relevant content of an image in a reduced set of data. It exploits the sparsity of natural images. This principle can be employed to deliver images over a network under a restricted data rate and still receive
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
A CMOS image sensor architecture that uses a cellular automaton for the pseudo-random compressive sampling matrix generation is presented. The image sensor employs in-pixel pulse-frequency modulation and column wise pulse counters to produce compress
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc94428bf201b1430989c6d0f805af67
Publikováno v:
ICECS
This paper proposes an image compressed sensing method by adaptive measurement matrix based on saliency detection in the compressive domain. The saliency mapping algorithm is simply the difference between adjacent compressive measurements of neighbor
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
This paper introduces a non-recursive algorithm for motion detection directly from the analysis of compressed samples. The objective of this research is to create an algorithm able to detect, in real-time, the presence of moving objects over a fixed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2563e208d11d34044564e2651ef6f2fc
Publikováno v:
ICDSC
Feature extraction is used to reduce the amount of resources required to describe a large set of data. A given feature can be represented by a matrix having the same size as the original image but having relevant values only in some specific points.
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
ICECS
instname
ICECS
Compressive sensing is an alternative to Nyquist-rate sampling when the signal to be acquired is known to be sparse or compressible. A sparse signal has a small number of nonzero components compared to its total length. This property can either exist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a35e7fa28f78098e0aa2fb9915c31a7