Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Marco Pereanez"'
Autor:
Rahman Attar, Stefan K. Piechnik, Marco Pereanez, Le Zhang, Ali Gooya, Xènia Albà, Alejandro F. Frangi, Stefan Neubauer, Steffen E. Petersen
Publikováno v:
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges ISBN: 9783030120283
STACOM@MICCAI
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges-9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers
STACOM@MICCAI
Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges-9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers
The exploitation of large-scale population data has the potential to improve healthcare by discovering and understanding patterns and trends within this data. To enable high throughput analysis of cardiac imaging data automatically, a pipeline should
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec672cce061fbba727403b5a65176f48
http://arxiv.org/abs/1901.03326
http://arxiv.org/abs/1901.03326
Autor:
Alejandro F. Frangi, Christopher Bowles, Marco Pereanez, Stefan Neubauer, Le Zhang, Steffen E. Petersen, Stefan K. Piechnik
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030322441
MICCAI (2)
MICCAI (2)
Accurate ventricular volume measurements depend on complete heart coverage in cardiac magnetic resonance (CMR) from where most immediate indicators of normal/abnormal cardiac function are available non-invasively. However, incomplete coverage, especi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc19e45b46d5159f34e95a3910cecdbc
https://doi.org/10.1007/978-3-030-32245-8_72
https://doi.org/10.1007/978-3-030-32245-8_72
Autor:
Le Zhang, Stefan K. Piechnik, Stefan Neubauer, Alejandro F. Frangi, Steffen E. Petersen, Marco Pereanez
Publikováno v:
Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics ISBN: 9783030139681
Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
Cardiac magnetic resonance (CMR) images play a growing role in diagnostic imaging of cardiovascular diseases. MRI is arguably the most comprehensive imaging modality for noninvasive and nonionizing imaging of the heart and great vessels and, hence, m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cbd6a34c9490cd5b6651b44e2da2055e
https://doi.org/10.1007/978-3-030-13969-8_15
https://doi.org/10.1007/978-3-030-13969-8_15
Autor:
Steffen E. Petersen, Stefan K. Piechnik, Alejandro F. Frangi, Rahman Attar, Stefan Neubauer, Marco Pereanez, Christopher Bowles
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030322441
MICCAI (2)
MICCAI (2)
Large prospective epidemiological studies acquire cardiovascular magnetic resonance (CMR) images for pre-symptomatic populations and follow these over time. To support this approach, fully automatic large-scale 3D analysis is essential. In this work,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ff76723a9eaef999ccf2d3a292d5c346
https://doi.org/10.1007/978-3-030-32245-8_65
https://doi.org/10.1007/978-3-030-32245-8_65
Autor:
Marco Pereanez, Steffen E. Petersen, Alejandro F. Frangi, Stefan K. Piechnik, Stefan Neubauer, Le Zhang, Christopher Bowles
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030322441
MICCAI (2)
MICCAI (2)
In clinical studies or population imaging settings, cardiac magnetic resonance (CMR) images may suffer from artifacts due to variability in the breath-hold position adopted by the patient during the scan. Consistent orientation of image planes with r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::958f2d638e837370cd46795883d924fe
https://doi.org/10.1007/978-3-030-32245-8_73
https://doi.org/10.1007/978-3-030-32245-8_73
Autor:
Marco Pereanez, Alejandro F. Frangi, Stefan Neubauer, Bo Dong, Steffen E. Petersen, Ali Gooya, Stefan K. Piechnik, Le Zhang
Cardiac magnetic resonance (CMR) images play a growing role in the diagnostic imaging of cardiovascular diseases. Full coverage of the left ventricle (LV), from base to apex, is a basic criterion for CMR image quality and necessary for accurate measu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::327facfd9d5aba11cee095fea96674e2
http://arxiv.org/abs/1811.02688
http://arxiv.org/abs/1811.02688
Autor:
Le Zhang, Nay Aung, José Miguel Paiva, Stefan Neubauer, Aaron M. Lee, Steffen E. Petersen, Xènia Albà, Alejandro F. Frangi, Stefan K. Piechnik, Kenneth Fung, Marco Pereanez, Mihir M. Sanghvi, Ali Gooya, Rahman Attar, Elena Lukaschuk, Milton Hoz de Vila
Publikováno v:
Medical image analysis. 56
Population imaging studies generate data for developing and implementing personalised health strategies to prevent, or more effectively treat disease. Large prospective epidemiological studies acquire imaging for pre-symptomatic populations. These st
Autor:
Xingyu Zhang, Xènia Albà, Pau Medrano-Gracia, Allen Lu, Peter Claes, Daniel Rueckert, Pierre Ablin, Sotirios A. Tsaftaris, Xavier Pennec, J. E. Allen, Marc-Michel Rohé, Marco Pereanez, Kaleem Siddiqi, Jan Ehrhardt, Serkan Çimen, Nicolas Duchateau, Avan Suinesiaputra, Vicente Grau, Catarina Pinto, Alejandro F. Frangi, Ilkay Oksuz, Karim Lekadir, Anirban Mukhopadhyay, Mahdi Tabassian, Martino Alessandrini, Alistair A. Young, Luciano Teresi, Nripesh Parajuli, Matthias Wilms, Maxime Sermesant, Brett R. Cowan, Ali Gooya, Jan D'hooge, Wenjia Bai, Paolo Piras, Dennis Säring
Publikováno v:
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics, 2018, 22 (3), pp.503-515. ⟨10.1109/JBHI.2017.2652449⟩
Suinesiaputra, A, Ablin, P, Alba, X, Alessandrini, M, Allen, J, Bai, W, Cimen, S, Claes, P, Cowan, B, D'hooge, J, Duchateau, N, Ehrhardt, J, Frangi, A, Gooya, A, Grau, V, Lekadir, K, Lu, A, Mukhopadhyay, A, Oksuz, I, Parajuli, N, Pennec, X, Pereanez, M, Pinto, C, Piras, P, Rohe, M-M, Rueckert, D, Saring, D, Sermesant, M, Siddiqi, K, Tabassian, M, Teresi, L, Tsaftaris, S, Wilms, M, Young, A, Zhang, X & Medrano-Gracia, P 2017, ' Statistical shape modeling of the left ventricle: myocardial infarct classification challenge ', IEEE Journal of Biomedical and Health Informatics . https://doi.org/10.1109/JBHI.2017.2652449
IEEE Journal of Biomedical and Health Informatics, Institute of Electrical and Electronics Engineers, 2018, 22 (3), pp.503-515. ⟨10.1109/JBHI.2017.2652449⟩
IEEE Journal of Biomedical and Health Informatics, 2018, 22 (3), pp.503-515. ⟨10.1109/JBHI.2017.2652449⟩
Suinesiaputra, A, Ablin, P, Alba, X, Alessandrini, M, Allen, J, Bai, W, Cimen, S, Claes, P, Cowan, B, D'hooge, J, Duchateau, N, Ehrhardt, J, Frangi, A, Gooya, A, Grau, V, Lekadir, K, Lu, A, Mukhopadhyay, A, Oksuz, I, Parajuli, N, Pennec, X, Pereanez, M, Pinto, C, Piras, P, Rohe, M-M, Rueckert, D, Saring, D, Sermesant, M, Siddiqi, K, Tabassian, M, Teresi, L, Tsaftaris, S, Wilms, M, Young, A, Zhang, X & Medrano-Gracia, P 2017, ' Statistical shape modeling of the left ventricle: myocardial infarct classification challenge ', IEEE Journal of Biomedical and Health Informatics . https://doi.org/10.1109/JBHI.2017.2652449
IEEE Journal of Biomedical and Health Informatics, Institute of Electrical and Electronics Engineers, 2018, 22 (3), pp.503-515. ⟨10.1109/JBHI.2017.2652449⟩
Statistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several met
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56516050c9df801bbd06edb841626f1d
https://inria.hal.science/hal-01533805/file/jSuinesiaputra_JBHI_2017_FINAL.pdf
https://inria.hal.science/hal-01533805/file/jSuinesiaputra_JBHI_2017_FINAL.pdf
Autor:
Alejandro F. Frangi, Stefan K. Piechnik, Le Zhang, Steffen E. Petersen, Stefan Neubauer, Marco Pereanez
Publikováno v:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 ISBN: 9783030009335
MICCAI (2)
MICCAI (2)
Cardiac functional parameters, such as, the Ejection Fraction (EF) and Cardiac Output (CO) of both ventricles, are most immediate indicators of normal/abnormal cardiac function. To compute these parameters, accurate measurement of ventricular volumes
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::931b45f3c5a91226a754042774afca8e
https://doi.org/10.1007/978-3-030-00934-2_54
https://doi.org/10.1007/978-3-030-00934-2_54
Publikováno v:
Medical Image Analysis. 18:1044-1058
The construction of statistical shape models (SSMs) that are rich, i.e., that represent well the natural and complex variability of anatomical structures, is an important research topic in medical imaging. To this end, existing works have addressed t