Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Marco Ojer"'
Publikováno v:
Applied Sciences, Vol 12, Iss 18, p 9200 (2022)
This work presents an industrial bin-picking framework for robotics called PickingDK. The proposed framework employs a plugin based architecture, which allows it to integrate different types of sensors, robots, tools, and available open-source softwa
Externí odkaz:
https://doaj.org/article/d80d8e8657284884ac8470c61a89d122
Autor:
Marco Ojer, Hugo Alvarez, Ismael Serrano, Fátima A. Saiz, Iñigo Barandiaran, Daniel Aguinaga, Leire Querejeta, David Alejandro
Publikováno v:
Applied Sciences, Vol 10, Iss 3, p 796 (2020)
Personalized production is moving the progress of industrial automation forward, and demanding new tools for improving the decision-making of the operators. This paper presents a new, projection-based augmented reality system for assisting operators
Externí odkaz:
https://doaj.org/article/af5e831952f54c879e170a5a143a5b4f
Publikováno v:
The International Journal of Advanced Manufacturing Technology. 125:2455-2466
Autor:
Leire Querejeta, Daniel Aguinaga, Ismael Serrano, David Alejandro, Iñigo Barandiaran, Hugo Álvarez, Fátima A. Saiz, Marco Ojer
Publikováno v:
Applied Sciences, Vol 10, Iss 3, p 796 (2020)
Applied Sciences
Volume 10
Issue 3
Applied Sciences
Volume 10
Issue 3
Personalized production is moving the progress of industrial automation forward, and demanding new tools for improving the decision-making of the operators. This paper presents a new, projection-based augmented reality system for assisting operators
Autor:
Daniel Mejia-Parra, Marco Ojer, Jorge Posada, Iñigo Barandiaran, Aitor Moreno, Oscar Ruiz-Salguero, Jairo R. Sánchez
Publikováno v:
International Journal for Simulation and Multidisciplinary Design Optimization, Vol 12, p 29 (2021)
In the context of smart manufacturing, the concept of Visual Computing is a key enabling technology for Industry 4.0. Visual Computing and Physically-based simulation enables the implementation of interactive, visual and (in most cases) non-disruptiv
Publikováno v:
ICRA
In the framework of robotics, Reinforcement Learning (RL) deals with the learning of a task by the robot itself. This paper presents a hierarchical-planning approach in which the robot learns the optimal behavior for different levels in a decoupled w