Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Marco Marengon"'
Publikováno v:
Duke Mathematical Journal. 172
Publikováno v:
Algebr. Geom. Topol. 20, no. 7 (2020), 3607-3706
We define new differential graded algebras 𝒜(n,k,𝒮) in the framework of Lipshitz, Ozsvath and Thurston’s and Zarev’s strands algebras from bordered Floer homology. The algebras 𝒜(n,k,𝒮) are meant to be strands models for Ozsvath and S
Publikováno v:
Nagoya Mathematical Journal. 244:60-118
We give a generators-and-relations description of differential graded algebras recently introduced by Ozsváth and Szabó for the computation of knot Floer homology. We also compute the homology of these algebras and determine when they are formal.
The special semester'Singularities and low dimensional topology'in the Spring of 2023 at the Erdős Center (Budapest) brought together algebraic geometers and topologists to discuss and explore the strong connection between surface singularities and
Autor:
Marco Marengon, Ciprian Manolescu
The Knight Move Conjecture claims that the Khovanov homology of any knot decomposes as direct sums of some "knight move" pairs and a single "pawn move" pair. This is true for instance whenever the Lee spectral sequence from Khovanov homology to Q^2 c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dda09a99ef8615bda73cec6814ecc587
http://arxiv.org/abs/1809.09769
http://arxiv.org/abs/1809.09769
Autor:
Marco Golla, Marco Marengon
Publikováno v:
The Michigan Mathematical Journal
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2018, 67 (1), pp.59-82. ⟨10.1307/mmj/1511924604⟩
Michigan Math. J. 67, iss. 1 (2018), 59-82
The Michigan Mathematical Journal, Michigan Mathematical Journal, 2018, 67 (1), pp.59-82. ⟨10.1307/mmj/1511924604⟩
Michigan Math. J. 67, iss. 1 (2018), 59-82
By considering negative surgeries on a knot $K$ in $S^{3}$ , we derive a lower bound on the nonorientable slice genus $\gamma_{4}(K)$ in terms of the signature $\sigma(K)$ and the concordance invariants $V_{i}(\overline {K})$ ; this bound strengthens
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32d443b308f893479afa0a9bc6bba7da
https://hal.archives-ouvertes.fr/hal-02182672
https://hal.archives-ouvertes.fr/hal-02182672
Autor:
András Juhász, Marco Marengon
Publikováno v:
Geom. Topol. 20, no. 6 (2016), 3623-3673
We show that a decorated knot concordance $C$ from $K$ to $K'$ induces a homomorphism $F_C$ on knot Floer homology that preserves the Alexander and Maslov gradings. Furthermore, it induces a morphism of the spectral sequences to $\widehat{HF}(S^3) \c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a37cc4607de9776201d5db44c5e37ea
https://projecteuclid.org/euclid.gt/1510859091
https://projecteuclid.org/euclid.gt/1510859091
Autor:
Marco Marengon, András Juhász
Publikováno v:
Selecta Mathematica
We study the maps induced on link Floer homology by elementary decorated link cobordisms. We compute these for births, deaths, stabilizations, and destabilizations, and show that saddle cobordisms can be computed in terms of maps in a decorated skein
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f9004be3c88ffa85f4515ab85e8b00b
http://arxiv.org/abs/1503.00665
http://arxiv.org/abs/1503.00665
Autor:
Marco Marengon
Publikováno v:
Journal of Knot Theory and Its Ramifications. 25:1650048
We prove that for particular infinite families of [Formula: see text]-spaces, arising as branched double covers, the [Formula: see text]-invariants defined by Ozsváth and Szabó assume arbitrarily large positive and negative values. As a consequence