Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Marco Bramanti"'
Autor:
Marco Bramanti, Sergio Polidoro
Publikováno v:
Mathematics in Engineering, Vol 2, Iss 4, Pp 734-771 (2020)
We consider a Kolmogorov-Fokker-Planck operator of the kind: \[ \mathcal{L}u=\sum_{i,j=1}^{q}a_{ij}\left( t\right) \partial_{x_{i}x_{j}} ^{2}u+\sum_{k,j=1}^{N}b_{jk}x_{k}\partial_{x_{j}}u-\partial_{t}u,\qquad (x,t)\in\mathbb{R}^{N+1} \] where $\left\
Externí odkaz:
https://doaj.org/article/fc4a494da20d47599c81844e520fc796
Autor:
Marco Bramanti
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 9, Iss 1, Pp 1-19 (2018)
We consider a nonvariational degenerate elliptic operator, structured on a system of left invariant, 1-homogeneous, Hörmander vector fields on a Carnot group, where the coefficient matrix is symmetric, uniformly positive on a bounded domain and the
Externí odkaz:
https://doaj.org/article/a589c725f3d54625987b7cd2ca82d7a2
Autor:
Marco Bramanti
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 4, Iss 1, Pp 15-37 (2013)
For a nonvariational operator structured on Hörmander's vector fields with drift, where the matrix of coffiecients is real, symmetric and uniformly positive, we prove local a priori estimates on the second order derivatives with respect to the vecto
Externí odkaz:
https://doaj.org/article/22721207458f4ea1afbfea9b28583657
Autor:
Marco Bramanti
Publikováno v:
Le Matematiche, Vol 49, Iss 1, Pp 149-168 (1994)
See directly the article.
Externí odkaz:
https://doaj.org/article/1a42d9b156ba4065afbc15cee9684696
Autor:
Marco Bramanti
Publikováno v:
Le Matematiche, Vol 47, Iss 1, Pp 25-61 (1992)
In this paper we deal with a uniformly elliptic operator of the kind: Lu Au + Vu, where the principal part A is in divergence form, and V is a function assumed in a “Kato class”. This operator has been studied in different contexts, especiall
Externí odkaz:
https://doaj.org/article/833cd2575d0a48fc98fd5ebf64a61a57
Let $L=sum_{j=1}^m X_j^2$ be a Hörmander sum of squares of vector fields in $R^n$, where any $X_j$ is homogeneous of degree 1 with respect to a family of non-isotropic dilations in $R^n$. Then, $L$ is known to admit a global fundamental solution Γ(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d047893dafe57900349130f59aa8266a
https://hdl.handle.net/11311/1223054
https://hdl.handle.net/11311/1223054
Publikováno v:
Mathematische Nachrichten. 294:1839-1842
Let L = ∑ j = 1 m X j 2 be a Hormander sum of squares of vector fields in space R n , where any X j is homogeneous of degree 1 with respect to a family of non-isotropic dilations in space. In this paper we prove global estimates and regularity prop
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::33ec6b0734e82b7b0bd81ecb16818e5e
https://hdl.handle.net/11585/816788
https://hdl.handle.net/11585/816788
Autor:
Marco Bramanti
We consider a heat-type operator L structured on the left invariant 1-homogeneous vector fields which are generators of a Carnot group, multiplied by a uniformly positive matrix of bounded measurable coefficients depending only on time. We prove that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a50d227345f0c2d35f76d985aff46084
http://hdl.handle.net/11311/1147274
http://hdl.handle.net/11311/1147274