Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Marco, Caballo"'
Autor:
Geke Litjens, Joris P. E. A. Broekmans, Tim Boers, Marco Caballo, Maud H. F. van den Hurk, Dilek Ozdemir, Caroline J. van Schaik, Markus H. A. Janse, Erwin J. M. van Geenen, Cees J. H. M. van Laarhoven, Mathias Prokop, Peter H. N. de With, Fons van der Sommen, John J. Hermans
Publikováno v:
Diagnostics, Vol 13, Iss 20, p 3198 (2023)
The preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor a
Externí odkaz:
https://doaj.org/article/613dd6d9f9df4eaaad2aa88fc6f162ce
Autor:
Sjoerd Tunissen, Andrea Motta, Franziska Mauter, Eloy García, Oliver Díaz, John M. Boone, Ioannis Sechopoulos, Marco Caballo
Publikováno v:
Medical Imaging 2023: Computer-Aided Diagnosis.
Autor:
Marco Caballo, Wendelien B. G. Sanderink, Luyi Han, Yuan Gao, Alexandra Athanasiou, Ritse M. Mann
Publikováno v:
Journal of Magnetic Resonance Imaging, 57, 97-110
Journal of Magnetic Resonance Imaging, 57, 1, pp. 97-110
Journal of Magnetic Resonance Imaging, 57(1), 97-110. Wiley
Journal of Magnetic Resonance Imaging, 57, 1, pp. 97-110
Journal of Magnetic Resonance Imaging, 57(1), 97-110. Wiley
Contains fulltext : 291130.pdf (Publisher’s version ) (Open Access) BACKGROUND: Breast cancer response to neoadjuvant chemotherapy (NAC) is typically evaluated through the assessment of tumor size reduction after a few cycles of NAC. In case of tre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::93ba9a6a84bb2516faf2a01386044b50
http://hdl.handle.net/2066/291130
http://hdl.handle.net/2066/291130
Autor:
Juan J, Pautasso, Marco, Caballo, Mikhail, Mikerov, John M, Boone, Koen, Michielsen, Ioannis, Sechopoulos
Publikováno v:
Medical physics. AAPM-American Association of Physicists in Medicine
Accurate correction of x-ray scatter in dedicated breast computed tomography (bCT) imaging may result in improved visual interpretation and is crucial to achieve quantitative accuracy during image reconstruction and analysis.To develop a deep learnin
Publikováno v:
Medical Imaging 2022: Computer-Aided Diagnosis.
Publikováno v:
Medical Imaging 2022: Image Processing.
Autor:
John M. Boone, David R. Dance, Eloy García, Christian Fedon, Marco Caballo, Ioannis Sechopoulos, Oliver Diaz
Publikováno v:
Medical Physics, 48, 3, pp. 1436-1447
Medical physics, vol 48, iss 3
Medical Physics, 48, 1436-1447
Medical Physics
Medical physics, vol 48, iss 3
Medical Physics, 48, 1436-1447
Medical Physics
Contains fulltext : 232900.pdf (Publisher’s version ) (Open Access) PURPOSE: To develop a patient-based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4f624137b6e41a87e8e608a2b2c8393
Autor:
Jonas Teuwen, John M. Boone, Ritse M. Mann, Su Hyun Lyu, Bram van Ginneken, Ioannis Sechopoulos, Andrew M. Hernandez, Marco Caballo
Publikováno v:
Journal of Medical Imaging, 8, 2
J Med Imaging (Bellingham)
Journal of Medical Imaging, 8
J Med Imaging (Bellingham)
Journal of Medical Imaging, 8
Purpose: A computer-aided diagnosis (CADx) system for breast masses is proposed, which incorporates both handcrafted and convolutional radiomic features embedded into a single deep learning model. Approach: The model combines handcrafted and convolut
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7acafa018149d93abfc4bd96646871ae
https://repository.ubn.ru.nl/handle/2066/233725
https://repository.ubn.ru.nl/handle/2066/233725
Autor:
Su Hyun Lyu, Wendelien B.G. Sanderink, Ritse M. Mann, Filippo Molinari, Domenico R. Pangallo, Ioannis Sechopoulos, John M. Boone, Marco Caballo, Andrew M. Hernandez
Publikováno v:
Medical Physics
Medical Physics, 48, 313-328
Medical physics, vol 48, iss 1
Medical Physics, 48, 1, pp. 313-328
Medical Physics, 48, 313-328
Medical physics, vol 48, iss 1
Medical Physics, 48, 1, pp. 313-328
Contains fulltext : 232918.pdf (Publisher’s version ) (Open Access) PURPOSE: To develop and evaluate the diagnostic performance of an algorithm for multi-marker radiomic-based classification of breast masses in dedicated breast computed tomography
Publikováno v:
15th International Workshop on Breast Imaging (IWBI2020).
Anthropomorphic digital breast phantoms are an essential part in the development, simulation, and optimisation of x-ray breast imaging systems. They could be used in many applications, such as running virtual clinical trials or developing dosimetry m