Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Marcin Preisner"'
Publikováno v:
Revista Matemática Complutense. 34:409-434
We consider a nonnegative self-adjoint operator L on $$L^2(X)$$ L 2 ( X ) , where $$X\subseteq {{\mathbb {R}}}^d$$ X ⊆ R d . Under certain assumptions, we prove atomic characterizations of the Hardy space $$\begin{aligned} H^1(L) = \left\{ f\in L^1
Autor:
Edyta Kania-Strojec, Marcin Preisner
Publikováno v:
The Journal of Geometric Analysis. 32
We study Hardy space $H^1_L(X)$ related to a self-adjoint operator $L$ defined on Euclidean domain $X \subseteq \mathbb{R}^d$. Under certain assumptions on the heat semigroup $\exp(-tL)$ we prove characterization of $H^1_L(X)$ by the Riesz transforms
Autor:
Edyta Kania, Marcin Preisner
Publikováno v:
Mathematische Nachrichten. 291:908-927
Consider the Bessel operator with a potential on L2((0,∞),xI±dx), namely Lf(x)=−f′′(x)−I±xf′(x)+V(x)f(x).We assume that I±>0 and V∈Lloc1((0,∞),xI±dx) is a nonnegative function. By definition, a funct
Autor:
Marcin Preisner
Publikováno v:
Studia Mathematica. 239:101-122
We investigate the Hardy space H L 1 H^1_L associated with a self-adjoint operator L L defined in a general setting by Hofmann, Lu, Mitrea, Mitrea, and Yan [Mem. Amer. Math. Soc. 214 (2011), pp. vi+78]. We assume that there exists an L L -harmonic no
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8feda4967d78efcff8458cc75a32e67f
http://arxiv.org/abs/1912.00734
http://arxiv.org/abs/1912.00734
Publikováno v:
Journal of Mathematical Fluid Mechanics. 21
We study 2d vortex sheets with unbounded support. First we show a version of the Biot–Savart law related to a class of objects including such vortex sheets. Next, we give a formula associating the kinetic energy of a very general class of flows wit
Autor:
Edyta Kania, Marcin Preisner
Consider the multidimensional Bessel operator $$\begin{aligned} B f(x) = -\sum _{j=1}^N \left( \partial _j^2 f(x) +\frac{\alpha _j}{x_j} \partial _j f(x) \right) , \quad x\in (0,\infty )^N. \end{aligned}$$ Let $$d = \sum _{j=1}^N \max (1,\alpha _j+1)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4c97505857184ae3898007b57a454dd0
http://arxiv.org/abs/1806.01060
http://arxiv.org/abs/1806.01060
Autor:
Marcin Preisner, Jacek Dziubański
Publikováno v:
Journal of Mathematical Analysis and Applications. 396:173-188
We investigate the Hardy space HL1 associated with the Schrodinger operator L=−Δ+V on Rn, where V=∑j=1dVj. We assume that each Vj depends on variables from a linear subspace Vj of Rn, dimVj≥3, and Vj belongs to Lq(Vj) for certain q. We prove t
Autor:
Marcin Preisner
Publikováno v:
Journal of Approximation Theory. 164:229-252
For @a>0 we consider the system @j"k^(^@a^-^1^)^/^2(x) of the Laguerre functions which are eigenfunctions of the differential operator Lf=-d^2dx^[email protected]+x^2f. We define an atomic Hardy space H"a"t^1(X), which is a subspace of L^1((0,~),x^@a
Autor:
Jacek Dziubański, Marcin Preisner
Publikováno v:
Monatshefte für Mathematik. 159:1-12
The aim of this paper is to prove a multiplier theorem for the Hankel transform on the atomic Hardy space H 1(X), where X = ((0, ∞), x α dx) is the space of homogeneous type in the sense of Coifman–Weiss. The main tool is a maximal function char