Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Marche aléatoire branchante"'
Autor:
Belloum, Mohamed Ali
Publikováno v:
Mathematics [math]. Université Sorbonne Naris Nord, 2021. English
In this thesis, we are interested in extreme values of certain spatial branching processes such as the branching random walk and the branching Brownian motion. The branching random walk is a particle system that can be described as follows. It starts
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::41417efdef2de4938e84731bef05f794
https://tel.archives-ouvertes.fr/tel-03494699/document
https://tel.archives-ouvertes.fr/tel-03494699/document
Autor:
Bai, Tianyi
Publikováno v:
General Mathematics [math.GM]. Université Paris-Nord-Paris XIII, 2021. English. ⟨NNT : 2021PA131011⟩
In this thesis, we are interested in random walks random walks on Galton-Watson trees and tree-indexed random walks. Firstly, we study the -biasedwalk on a Galton-Watson tree, and deduce the scaling limit of its cover time,i.e. the time that every ve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::30649c9f5e782b333794c93b5e2511d8
https://tel.archives-ouvertes.fr/tel-03416183/document
https://tel.archives-ouvertes.fr/tel-03416183/document
Autor:
Boutaud, Pierre
Publikováno v:
Probability [math.PR]. Université Paris-Saclay, 2020. English. ⟨NNT : 2020UPASM025⟩
The branching random walk is a particle system on the real line starting at time 0 with an initial particle at position 0, then each particle living at time n proceeds to die at time n+1 and give birth, independently from the other particles of gener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::ebffe8e5dadd5e43dd37d1303431bf60
https://tel.archives-ouvertes.fr/tel-03136471
https://tel.archives-ouvertes.fr/tel-03136471
Autor:
Boutaud, Pierre
Publikováno v:
Probability [math.PR]. Université Paris-Saclay, 2020. English. ⟨NNT : 2020UPASM025⟩
The branching random walk is a particle system on the real line starting at time 0 with an initial particle at position 0, then each particle living at time n proceeds to die at time n+1 and give birth, independently from the other particles of gener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______212::ebffe8e5dadd5e43dd37d1303431bf60
https://tel.archives-ouvertes.fr/tel-03136471
https://tel.archives-ouvertes.fr/tel-03136471
Autor:
Pain, Michel
Publikováno v:
Probabilités [math.PR]. Sorbonne Université, 2019. Français. ⟨NNT : 2019SORUS305⟩
Probabilités [math.PR]. Sorbonne Université, 2019. Français
Probabilités [math.PR]. Sorbonne Université, 2019. Français
Introduction en français, puis les chapitres suivants en anglais.; Branching Brownian motion (BBM) is a particle system, where particles move and reproduce randomly. Firstly, we study precisely the phase transition occuring for this particle system
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::8420a8335a24f3ca0325420ba6de6308
https://tel.archives-ouvertes.fr/tel-02435953
https://tel.archives-ouvertes.fr/tel-02435953
Autor:
Brunet, Éric
Publikováno v:
Statistical Mechanics [cond-mat.stat-mech]. UPMC, 2016
The Fisher-Kolmogorov, Petrovski, Piscounov equation (FKPP) is a deterministic partial differential equation.It describes the evolution of an invasion front from a stable phase into an unstable phase. Branching Brownianmotion (BBM) is a stochastic Ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::d0fb2ee76e5f35114fa2493f1ad0919f
https://theses.hal.science/tel-01417420/file/hdr.pdf
https://theses.hal.science/tel-01417420/file/hdr.pdf
Autor:
Mallein, Bastien
On s'intéresse dans cette thèse au modèle de la marche aléatoire branchante, un système de particules qui évoluent au court du temps en se déplaçant et se reproduisant de façon indépendante. Le but est d'étudier le rythme auquel ces partic
Externí odkaz:
http://www.theses.fr/2015PA066104/document
Autor:
Mallein, Bastien
Publikováno v:
Complex Variables [math.CV]. Université Pierre et Marie Curie-Paris VI, 2015. English. ⟨NNT : 2015PA066104⟩
General Mathematics [math.GM]. Université Pierre et Marie Curie-Paris VI, 2015. English. ⟨NNT : 2015PA066104⟩
General Mathematics [math.GM]. Université Pierre et Marie Curie-Paris VI, 2015. English. ⟨NNT : 2015PA066104⟩
In this thesis, we take interest in the branching random walk, a particles system, in which particles move and reproduce independently. The aim is to study the rhythm at which these particles invade their environment, a quantity which often reveals i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2d215a0eefb25b19fef549082dd1c12c
https://tel.archives-ouvertes.fr/tel-01188650v2/document
https://tel.archives-ouvertes.fr/tel-01188650v2/document
Autor:
Ouimet, Frédéric
Voir la bibliographie du mémoire pour les références du résumé. See the thesis`s bibliography for the references in the summary.
Ce mémoire étudie le comportement du maximum et des hauts points de la marche aléatoire branchante et du cha
Ce mémoire étudie le comportement du maximum et des hauts points de la marche aléatoire branchante et du cha
Externí odkaz:
http://hdl.handle.net/1866/11510