Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Marcelo Tadeu Sales"'
Publikováno v:
The Electronic Journal of Combinatorics. 29
In this paper we make a partial progress on the following conjecture: for every $\mu>0$ and large enough $n$, every Steiner triple system $S$ on at least $(1+\mu)n$ vertices contains every hypertree $T$ on $n$ vertices. We prove that the conjecture h
Autor:
Marcelo Tadeu Sales, Vojtech Rödl
Let $AP_k=\{a,a+d,\ldots,a+(k-1)d\}$ be an arithmetic progression. For $\epsilon>0$ we call a set $AP_k(\epsilon)=\{x_0,\ldots,x_{k-1}\}$ an $\epsilon$-approximate arithmetic progression if for some $a$ and $d$, $|x_i-(a+id)
Comment: 20 pages. C
Comment: 20 pages. C
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db69498fa3541ff2e936af464a81c166
http://arxiv.org/abs/2102.04651
http://arxiv.org/abs/2102.04651
Publikováno v:
LATIN 2018: Theoretical Informatics ISBN: 9783319774039
LATIN
LATIN
A configuration is a point set on the plane, with no three points collinear. Given three non-collinear points p, q and \(r\in \mathbb {R}^2\), let \(\chi (p,q,r)\in \{-1,1\}\), with \(\chi (p,q,r)=1\) if and only if, when we traverse the circle defin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3aa43120e7efa01af08ea316a3c398ba
https://doi.org/10.1007/978-3-319-77404-6_43
https://doi.org/10.1007/978-3-319-77404-6_43