Zobrazeno 1 - 10
of 99
pro vyhledávání: '"Marcelo M. Cavalcanti"'
Publikováno v:
Examples and Counterexamples, Vol 2, Iss , Pp 100065- (2022)
The long time behavior of a class of degenerate parabolic equations in a bounded domain will be considered in the sense that the nonnegative diffusion coefficient a(x)is allowed to vanish in a set of positive measure in the interior of the domain. We
Externí odkaz:
https://doaj.org/article/68c80b59ce14410c818c48f26a0c3dff
Publikováno v:
Electronic Journal of Differential Equations, Vol 2004, Iss 55, Pp 1-19 (2004)
In this article we study the homogenization and uniform decay of the nonlinear hyperbolic equation $$ partial_{tt} u_{varepsilon} -Delta u_{varepsilon} +F(x,t,partial_t u_{varepsilon}, abla u_{varepsilon})=0 quadhbox{in }Omega_{varepsilon}imes(0,+inf
Externí odkaz:
https://doaj.org/article/60790c059e2944d785c8f8d1a0a93bb0
Publikováno v:
Electronic Journal of Differential Equations, Vol 2002, Iss 44, Pp 1-14 (2002)
In this paper we obtain an exponential rate of decay for the solution of the viscoelastic nonlinear wave equation $$ u_{tt}-Delta u+f(x,t,u)+int_0^tg(t-au )Delta u( au ),dau +a(x)u_t=0quad hbox{in }Omegaimes (0,infty ). $$ Here the damping term $a(x)
Externí odkaz:
https://doaj.org/article/9b30d81713894b6db5636e5710c89971
Publikováno v:
Electronic Journal of Differential Equations, Vol 1998, Iss 08, Pp 1-21 (1998)
In this article, we study the hyperbolic problem $$ K(x,t)u_{tt} - sum_{j=1}^nleft(a(x,t)u_{x_j} ight) + F(x,t,u,abla u) = 0 $$ coupled with boundary conditions $$u=0,quadhbox{on }Gamma_1,, quad {partial u overpartialu} + Beta(x)u_t =0quadhbox{ on }G
Externí odkaz:
https://doaj.org/article/a8b8197cf0c7426088db7cff3d9d8a62
Publikováno v:
Asymptotic Analysis. 128:273-293
In the present paper, we are concerned with the semilinear viscoelastic wave equation in an inhomogeneous medium Ω subject to two localized dampings. The first one is of the type viscoelastic and is distributed around a neighborhood ω of the bounda
Autor:
Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Dilberto da Silva Almeida Júnior, Victor Hugo Gonzalez Martinez, Mauro de Lima Santos
Publikováno v:
Advanced Nonlinear Studies. 22:340-360
In this manuscript, we analyze the exponential stability of a strongly coupled semilinear system of Klein-Gordon type, posed in an inhomogeneous medium Ω \Omega , subject to local dampings of different natures distributed around a neighborhood of th
Publikováno v:
Advanced Nonlinear Studies. 21:875-903
In this paper we study the existence as well as uniform decay rates of the energy associated with the nonlinear damped Schrödinger equation, i u t + Δ u + | u | α u - g ( u t ) = 0 in Ω × ( 0 , ∞ ) , iu_{t}+\Delta u+|u|^{\a
Autor:
A C Mauricio Sepúlveda, Andrei V. Faminskii, Wellington J. Corrêa, Rodrigo Véjar-Asem, Marcelo M. Cavalcanti
Publikováno v:
Computers & Mathematics with Applications. 96:188-208
In this work, we study at the L 2 – level global well-posedness as well as long-time stability of an initial-boundary value problem, posed on a bounded interval, for a generalized higher order nonlinear Schrodinger equation, modeling the propagatio
Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type
Publikováno v:
Journal of Differential Equations. 290:197-222
In this paper, motivated by recent papers on the stabilization of evolution problems with nonlocal degenerate damping terms, we address an extensible beam model with degenerate nonlocal damping of Balakrishnan-Taylor type. We discuss initially on the
Autor:
Leonel Giacomini Delatorre, Marcelo M. Cavalcanti, Victor H. Gonzalez Martinez, Valéria N. Domingos Cavalcanti, Daiane Campara Soares
Publikováno v:
Mathematical Methods in the Applied Sciences. 44:10281-10303