Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Marcelo J. D. Nascimento"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2019, Iss 72,, Pp 1-19 (2019)
In this article we study non-autonomous approximations governed by the fractional powers of damped wave operators of order $\alpha \in (0,1)$ subject to Dirichlet boundary conditions in an $n$-dimensional bounded domain with smooth boundary. We give
Externí odkaz:
https://doaj.org/article/f5ab3bf9c70241b99329fba88497d9e5
Publikováno v:
Nonlinearity. 36:1218-1244
In this paper we are concerned with convergence properties of pullback attractors with respect to order of the fractional oscillon equations, that is, we study the fast growing dissipative semilinear oscillon equations as a limiting problem of semili
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 40:1937-1961
This paper is concerned with the long-time behavior for a class of non-autonomous plate equations with perturbation and strong damping of \begin{document}$ p $\end{document} -Laplacian type \begin{document}$ u_{tt} + \Delta^2 u + a_{\epsilon}(t) u_t
Publikováno v:
Journal of Evolution Equations. 22
In this paper we are concerned with the asymptotic behavior of nonautonomous fractional approximations of oscillon equation $$ u_{tt}-\mu(t)\Delta u+\omega(t)u_t=f(u),\ x\in\Omega,\ t\in\mathbb{R}, $$ subject to Dirichlet boundary condition on $\part
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9273f75134b0f16452c9f33af796b88d
http://arxiv.org/abs/2006.03192
http://arxiv.org/abs/2006.03192
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper we study the abstract semilinear parabolic problem of the form \begin{document}$ \frac{du}{dt}+Au = f(u), $\end{document} as the limit of the corresponding fractional approximations \begin{document}$ \frac{du}{dt} + A^{\alpha}u = f(u),
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3667037426345e0a57aa3a4417e5ae5d
Publikováno v:
Communications on Pure and Applied Analysis. 21:2739
In this paper we explore the theory of fractional powers of positive operators, more precisely, we use the Balakrishnan formula to obtain parabolic approximations of (damped) wave equations in bounded smooth domains in \begin{document}$ \mathbb{R}^N
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 2:449-471
In this work we consider initial value problems of the form $\frac{dx}{dt} + A(t)x = f(t,x)$ $x(\tau)=x_0,$ in a Banach space $X$ where $A(t):D\subset X\to X$ is a linear, closed and unbounded operator which is sectorial for each $t$. We show local w
Publikováno v:
Journal of Evolution Equations. 8:631-659
Inspired by the theory of semigroups of growth α, we construct an evolution process of growth α. The abstract theory is applied to study semilinear singular non-autonomous parabolic problems. We prove that, under natural assumptions, a reasonable c