Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Marcelo F. Furtado"'
Autor:
Marcelo F. Furtado, Reinaldo de Marchi
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 15,, Pp 1-7 (2017)
We show the existence of a nonzero solution for the semilinear Schrodinger equation $-\Delta u+V(x)u=f(x,u)$. The potential V is periodic and 0 belongs to a gap of $\sigma(-\Delta +V)$. The function f is superlinear and asymptotically periodic with
Externí odkaz:
https://doaj.org/article/e342fc7358e84ee099fc28386a5020c7
Autor:
Marcelo F. Furtado, Elves A. B. Silva
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 06, Pp 155-171 (2001)
We establish the existence of a nontrivial solution for a double resonant elliptic problem under a local non-quadraticity condition at infinity and pointwise limits. We also study the existence of a nonzero solution when there is resonance at the fir
Externí odkaz:
https://doaj.org/article/f4f368bc8e8440edb28ae7a18179c3f6
Publikováno v:
Journal of Mathematical Analysis and Applications. 526:127252
Publikováno v:
Communications in Contemporary Mathematics.
In this paper, we prove a new Friedrich-type inequality. As an application, we derive some existence and non-existence results to the quasilinear elliptic problem with Robin boundary condition [Formula: see text] where [Formula: see text] is an exter
Publikováno v:
Annales Fennici Mathematici
We consider the system \[\begin{cases}-m\left(\|u\|^2\right)\Delta u = \lambda F_u(x,u,v)+\frac{1}{2^*}G_u(u,v), &in\ \Omega,\\ -l\left(\|v\|^2\right)\Delta v = \lambda F_v(x,u,v)+\frac{1}{2^*}G_v(u,v), &in\ \Omega,\\ u,v\in H_0^1(\Omega),\end{cases}
Publikováno v:
Mathematische Nachrichten. 294:877-899
We prove a weighted Sobolev trace embedding in the upper half‐space and give its best constant. This embedding can be employed to study a number of critical boundary problems. In this direction, we obtain existence and nonexistence results for a cl
Publikováno v:
Israel Journal of Mathematics. 241:775-794
We prove the existence of a positive solution for the problem $${\rm{\gamma}}{{\rm{\Delta}}^2}u - m\left(u \right){\rm{\Delta}}u = \mu a\left(x \right){u^q} + b\left(x \right){u^p},\,\,{\rm{in}}\,{\rm{\Omega ,}}\,\,\,\,\,u = {\rm{\gamma \Delta}}u = 0
Publikováno v:
Communications on Pure & Applied Analysis. 19:4937-4953
We perform an weighted Sobolev space approach to prove a Trudinger-Moser type inequality in the upper half-space. As applications, we derive some existence and multiplicity results for the problem \begin{document}$ \begin{cases} -\Delta u+h(x)|u|^{q-
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 29
Publikováno v:
Partial Differential Equations and Applications. 2
We obtain multiple solutions for the nonlinear boundary value problem $$\begin{aligned} -\Delta u-\dfrac{1}{2}\left( x\cdot \nabla u\right) = f(u), \text{ in } {\mathbb {R}}_{+}^{N}, \qquad \dfrac{\partial u}{\partial \eta }= \beta |u|^{2/(N-2)}u, \t