Zobrazeno 1 - 10
of 44
pro vyhledávání: '"Marcello Lucia"'
Autor:
Bernd Kawohl, Marcello Lucia
Publikováno v:
Journal d'Analyse Mathématique. 142:667-696
We consider the following semilinear overdetermined problem on a two dimensional bounded or unbounded domain Ω with analytic boundary ∂Ω having at least one bounded connected component $$\left\{ {\begin{array}{*{20}{c}} { - \Delta u = g(u)}\;\;\;
Autor:
Marcello Lucia, S. Prashanth
Publikováno v:
Journal of Differential Equations. 269:7211-7213
We show that the cone of non-negative distributional supersolutions is one dimensional for an operator − Δ + V with a locally integrable potential V satisfying property (1.1) below. As a consequence, we obtain a characterisation of critical/subcri
Autor:
Marcello Lucia, S. Prashanth
Publikováno v:
Journal of Differential Equations. 265:3400-3440
In a seminal work, B. Simon provided a classification of nonnegative Schr��dinger operators $-��+V$ into subcritical and critical operators based on the long-term behaviour of the associated heat kernel. Later works by others developed an alt
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
This article concerns the antisymmetry, uniqueness, and monotonicity properties of solutions to some elliptic functionals involving weights and a double well potential. In the one-dimensional case, we introduce the continuous odd rearrangement of an
In this paper we define a Donaldson type functional whose Euler-Lagrange equations are a system of differential equations which corresponds to Hitchin's self-duality equations for a suitable choice of Higgs bundle on closed Riemann surfaces. The main
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ab570371393edb8ba260b6f2527c83c
Initiated by the work of Uhlenbeck in late 1970s, we study questions about the existence, multiplicity and asymptotic behavior for minimal immersions of closed surface in some hyperbolic three-manifold, with prescribed conformal structure on the surf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f9f2dec40e72ed63d6a573f9a95b8dce
http://arxiv.org/abs/1908.06457
http://arxiv.org/abs/1908.06457
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 37:1789-1818
We consider the following mean field type equations on domains of \begin{document}$\mathbb R^2$\end{document} under Dirichlet boundary conditions: \begin{document}$\left\{ \begin{array}{l} - \Delta u = \varrho \frac{{K {e^u}}}{{\int_\Omega {K {e^u}}
Autor:
Marcello Lucia, Guido Sweers
Publikováno v:
Communications on Pure & Applied Analysis. 20:4177
We consider fully coupled cooperative systems on \begin{document}$ \mathbb{R}^n $\end{document} with coefficients that decay exponentially at infinity. Expanding some results obtained previously on bounded domain, we prove that the existence of a str
Autor:
Marcello Lucia, Zhongwei Tang
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 24
Motivated by problems arising in nonlinear optics and Bose–Einstein condensates, we consider in $$\mathbb R^N$$ ( $$N \le 3$$ ) the following $$n \times n$$ system of coupled Schrodinger equations where $$\varepsilon >0$$ is a parameter, $$\beta _{
Publikováno v:
Mathematical Research Letters. 20:501-520