Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Marcello Guidorzi"'
Publikováno v:
Journal of Mathematical Fluid Mechanics. 14:1-32
We prove a continuous dependence theorem for weak solutions of equations governing a fluid–structure interaction problem in two spatial dimensions. The proof is based on a priori estimates which, in particular, convey uniqueness of weak solutions.
Publikováno v:
Journal of Differential Equations. 243:329-348
Classical one-dimensional, autonomous Lagrange problems are considered. In absence of any smoothness, convexity or coercivity condition on the energy density, we prove a DuBois-Reymond type necessary condition, expressed as a differential inclusion i
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 54:591-616
Local Lipschitz continuity of local minimizers of vectorial integrals ∫Ωf(x,Du(x))dx is proved when f satisfies p−q growth condition and ξ↦f(x,ξ) is convex. The uniform convexity and the radial structure condition with respect to the last va
Autor:
Laura Poggiolini, Marcello Guidorzi
Publikováno v:
NoDEA : Nonlinear Differential Equations and Applications. 6:227-246
We consider a functional of the type \( {\cal F}(u) = \int_\Omega F(x,u,\ldots,{D^k}u)dx \), where \( \Omega \) is an open bounded set of \( {\Bbb R}^n \) and F is a Caratheodory function. By an approximation argument we prove the lower semincontinui
We consider the following autonomous variational problem minimize { ∫ a b f ( v ( x ) , v ′ ( x ) ) d x : v ∈ W 1 , 1 ( a , b ) , v ( a ) = α , v ( b ) = β } where the Lagrangian f is assumed to be continuous, but not necessarily coercive, no
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d57ddfbe9c0594187ec93938619d0cdd
http://hdl.handle.net/11585/79069
http://hdl.handle.net/11585/79069
Autor:
Mariarosaria Padula, Marcello Guidorzi
Publikováno v:
Trends in Mathematics ISBN: 9783764374501
In this note we present a method based on Galerkin scheme that seems appropriate to provide global in time fluids flows in domains with moving boundary. Initial data are assumed to be small but not infinitesimal.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::056f3d4079b9f41c0801abf53c0aa443
https://doi.org/10.1007/978-3-7643-7451-8_12
https://doi.org/10.1007/978-3-7643-7451-8_12
We show that local minimizers of functionals of the form ∫ Ω [f(Du(Χ}} + g(Χ, u(Χ))] dΧ, u e u 0 + W 1,p 0 (Ω), ∫ Ω [∫(Du(Χ))+g(Χ, u(Χ))] dΧ, ueu o +W 1,p 0 (ΩQ), are locally Lipschitz continuous provided f is a convex function with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7e1db1d66484c878af747a3ece9d933
http://hdl.handle.net/11585/64837
http://hdl.handle.net/11585/64837
Publikováno v:
ESAIM: Control, Optimisation & Calculus of Variations; Apr2007, Vol. 13 Issue 2, p343-358, 16p