Zobrazeno 1 - 10
of 480
pro vyhledávání: '"Marcello Federico"'
Publikováno v:
IJCoL, Vol 4, Iss 1, Pp 11-25 (2018)
In recent years, Neural Machine Translation (NMT) has been shown to be more effective than phrase-based statistical methods, thus quickly becoming the state of the art in machine translation (MT). However, NMT systems are limited in translating low-r
Externí odkaz:
https://doaj.org/article/2b007dd0adc846848c6d4c6ca15810d3
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Autor:
Chatzitheodorou, Konstantinos1 kchatzitheodorou@ionio.gr, Kaldeli, Eirini2 ekaldeli@image.ntua.gr, Isaac, Antoine3 antoine.isaac@europeana.eu, Scalia, Paolo4 paolo.scalia@europeana.eu, Grau Lacal, Carmen5 c.grau@pangeanic.com, Escrivá, MªÁngeles García6 ma.garcia@pangeanic.com
Publikováno v:
Information Technology & Libraries. Sep2024, Vol. 43 Issue 3, p1-17. 17p.
Publikováno v:
ICASSP
Automatic dubbing is an extension of speech-to-speech translation such that the resulting target speech is carefully aligned in terms of duration, lip movements, timbre, emotion, prosody, etc. of the speaker in order to achieve audiovisual coherence.
Autor:
Jacob Bremerman, Satoshi Nakamura, Changhan Wang, Roldano Cattoni, Marco Turchi, Marcello Federico, Xutai Ma, Sebastian Stüker, Matthew Wiesner, Antonios Anastasopoulos, Maha Elbayad, Katsuhito Sudoh, Matteo Negri, Ondrej Bojar, Juan Pino, Elizabeth Salesky, Jan Niehues, Alex Waibel
Publikováno v:
IWSLT 2021: THE 18TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE TRANSLATION, 1-29
STARTPAGE=1;ENDPAGE=29;TITLE=IWSLT 2021: THE 18TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE TRANSLATION
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)
IWSLT
STARTPAGE=1;ENDPAGE=29;TITLE=IWSLT 2021: THE 18TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE TRANSLATION
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)
IWSLT
The evaluation campaign of the International Conference on Spoken Language Translation (IWSLT 2021) featured this year four shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Multilingual speech translation, (iv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f99a86a3779444c0ff0a3703891ec7bd
https://cris.maastrichtuniversity.nl/en/publications/b700c4f5-c944-426b-9b60-10991fcbbc81
https://cris.maastrichtuniversity.nl/en/publications/b700c4f5-c944-426b-9b60-10991fcbbc81
Publikováno v:
NAACL-HLT
One key ingredient of neural machine translation is the use of large datasets from different domains and resources (e.g. Europarl, TED talks). These datasets contain documents translated by professional translators using different but consistent tran
Autor:
Robert Enyedi, Marcello Federico, Surafel Melaku Lakew, Yogesh Virkar, Cuong Hoang, Roberto Barra-Chicote, Yue Wang
Publikováno v:
ICASSP
Automatic dubbing aims at seamlessly replacing the speech in a video document with synthetic speech in a different language. The task implies many challenges, one of which is generating translations that not only convey the original content, but also
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2584428462de65bbad54bc54751635cb
Automatic dubbing (AD) is among the machine translation (MT) use cases where translations should match a given length to allow for synchronicity between source and target speech. For neural MT, generating translations of length close to the source le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7fdb8568a01d501b77c539bbc1de6e8a
Autor:
David Vilar, Marcello Federico
Publikováno v:
IWSLT
Sub-word segmentation is currently a standard tool for training neural machine translation (MT) systems and other NLP tasks. The goal is to split words (both in the source and target languages) into smaller units which then constitute the input and o
Publikováno v:
INTERSPEECH