Zobrazeno 1 - 10
of 60
pro vyhledávání: '"Marcello D'Abbicco"'
Autor:
Marcello D'Abbicco, Giovanni Girardi
Publikováno v:
Bruno Pini Mathematical Analysis Seminar, Vol 14, Iss 2, Pp 263-280 (2024)
In this paper, we study critical nonlinearities for global small data solutions to the plate equation and other second order p-evolution equations, possibly under the action of a noneffective dissipative term.
Externí odkaz:
https://doaj.org/article/2adf563af8714f3d9dc6bb574911477e
Autor:
Marcello D’Abbicco, Giovanni Girardi
Publikováno v:
Fractional Calculus and Applied Analysis. 25:1199-1228
We consider the Cauchy-type problem associated to the time fractional partial differential equation: $$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u+\partial _t^{\beta }u-\varDelta u=g(t,x), &{} t>0, \ x\in {\mathbb {R}}^n \\ u(0,x)=u_0(x)
Publikováno v:
Mathematical Methods in the Applied Sciences. 45:6951-6981
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 201:529-560
In this work, we prove the existence of global (in time) small data solutions for wave equations with two dissipative terms and with power nonlinearity $$|u|^p$$ | u | p or nonlinearity of derivative type $$|u_t|^p$$ | u t | p , in any space dimensio
Autor:
Marcello D'Abbicco
Publikováno v:
Journal of Differential Equations. 286:531-556
We study the Cauchy problem for the Euler-Poisson-Darboux equation, with a power nonlinearity: u t t − u x x + μ t u t = t α | u | p , t > t 0 , x ∈ R , where μ > 0 , p > 1 and α > − 2 . Here either t 0 = 0 (singular problem) or t 0 > 0 (re
Autor:
Marcello D'Abbicco, Silvia Romanelli, Gisèle Ruiz Goldstein, Giovanni Girardi, Jerome A. Goldstein
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 14:597-613
The kinetic and potential energies for the damped wave equation \begin{document} $ \begin{equation} u''+2Bu'+A^2u = 0 \;\;\;\;\;\;({\rm DWE})\end{equation} $ \end{document} are defined by \begin{document}$ K(t) = \Vert u'(t)\Vert^2,\, P(t) = \Vert Au
Autor:
Marcello D'Abbicco, Marcelo R. Ebert
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this paper, we find the critical exponent for the existence of global small data solutions to: u t t + ( − Δ ) σ u + ( − Δ ) θ 2 u t = f ( u , u t ) , t ≥ 0 , x ∈ R n , ( u , u t ) ( 0 , x ) = ( 0 , u 1 ( x ) ) , in the case of so-call
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d40c097877b6d740bc459d9f553be72
Publikováno v:
Journal of Dynamics and Differential Equations. 33:63-74
In this note, we consider a semilinear wave equation with scale-invariant mass and dissipation. The scale of the dissipation is the same of the mass term and this creates an interplay in which a relation between the coefficients comes into play to de
Publikováno v:
Journal of Mathematical Analysis and Applications. 478:476-498
In this paper, we derive L 1 − L 1 long time estimates for the strongly damped plate equation u t t + Δ 2 u + Δ 2 u t = 0 x ∈ R n , t ∈ R + , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) . In particular, we prove that ‖ u ( t , ⋅ )
Autor:
Marcello D'Abbicco, Ryo Ikehata
Publikováno v:
Mathematical Methods in the Applied Sciences. 42:2287-2301