Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Marcella Takáts"'
Publikováno v:
Designs, Codes and Cryptography. 89:2067-2078
In the history of secret sharing schemes many constructions are based on geometric objects. In this paper we investigate generalizations of threshold schemes and related finite geometric structures. In particular, we analyse compartmented and hierarc
Publikováno v:
Designs, Codes and Cryptography. 76:207-216
We consider the following $q$-analog of the basic combinatorial search problem: let $q$ be a prime power and $\GF(q)$ the finite field of $q$ elements. Let $V$ denote an $n$-dimensional vector space over $\GF(q)$ and let $\mathbf{v}$ be an unknown 1-
Autor:
Marcella Takáts, Péter Sziklai
Publikováno v:
Discrete Mathematics. 312(12-13):2083-2087
Let $U$ be a point set in the $n$-dimensional affine space ${\rm AG}(n,q)$ over the finite field of $q$ elements and $0\leq k\leq n-2$. In this paper we extend the definition of directions determined by $U$: a $k$-dimensional subspace $S_k$ at infini
Autor:
Péter Sziklai, Marcella Takáts
Publikováno v:
Finite Fields and Their Applications. 14(4):1056-1067
Given a set T⊆GF(q), |T|=t, wT is defined as the smallest positive integer k for which ∑y∈Tyk≠0. It can be shown that wT⩽t always and wT⩽t−1 if the characteristic p divides t. T is called a Vandermonde set if wT⩾t−1 and a super-Vand
In this article we prove a theorem about the number of directions determined by less then $q$ affine points, similar to the result of Blokhuis et al. (in J. Comb. Theory Ser. A 86(1), 187-196, 1999) on the number of directions determined by $q$ affin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e398f7994092088729ea37a9f4a0befa
http://arxiv.org/abs/1407.5638
http://arxiv.org/abs/1407.5638
Publikováno v:
Vrije Universiteit Brussel
Given a point set U in an n-dimensional affine space of size qn-1-ε, we obtain information on the structure of the set of directions that are not determined by U, and we describe an application in the theory of partial ovoids of certain partial geom
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::943a7cfeac671bd26451243a8388e4bc
https://hdl.handle.net/20.500.14017/0e9475f6-19e7-4ab8-ac67-fbe8f78df357
https://hdl.handle.net/20.500.14017/0e9475f6-19e7-4ab8-ac67-fbe8f78df357
Autor:
Tamás Héger, Marcella Takáts
Publikováno v:
Scopus-Elsevier
We show that the metric dimension of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in $\mathrm{PG}(2,q)$, the Desarguesian proje