Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Marc Peigné"'
Autor:
Marc, Peigné
We prove here that the Poincar\'e exponent of a geometrically finite group od isometries of the 3-dimensionnal hyperbolic space coincides with the Hausdorff dimension of its limit set. We also compare the natural measures supported by this set: the P
Externí odkaz:
http://arxiv.org/abs/1207.7201
In this paper we try to compare the "horoboundary" of a (not necessarily simply connected) negatively curved complete Riemannian manifold X with the visual one and describe with explicit examples some phenomenoms wich may appear when X is not simply
Externí odkaz:
http://arxiv.org/abs/1010.6028
Autor:
Marc Peigné, Tat Dat Tran
Publikováno v:
Journal of Applied Probability. 59:505-526
We give a setting of the Diaconis–Freedman chain in a multi-dimensional simplex and consider its asymptotic behavior. By using techniques from random iterated function theory and quasi-compact operator theory, we first give some sufficient conditio
Autor:
Marc Peigné
Publikováno v:
Annales de la Faculté des sciences de Toulouse : Mathématiques. 28:491-521
Autor:
Marc Peigné, Fetima Ladjimi
Publikováno v:
Statistics & Probability Letters. 145:1-11
We describe the asymptotic behavior of the Diaconis–Freedman chain on [ 0 , 1 ] , using technics developed to study iterated Lipschitz functions systems with possibly place dependent probabilities. Under some general conditions on this family of pr
Autor:
Marc Peigné, Hoang-Long Ngo
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030748623
Let \(\xi _n, n \in \mathbb N\) be a sequence of i.i.d. random variables with values in \(\mathbb Z\). The associated random walk on \(\mathbb Z\) is S(n) = ξ1 + ⋯ + ξn+1 and the corresponding “reflected walk” on \(\mathbb N_0\) is the Markov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::12e5d4bbdeafcdb3f52f4679b494c27d
https://doi.org/10.1007/978-3-030-74863-0_6
https://doi.org/10.1007/978-3-030-74863-0_6
Let (Z n) n≥0 with Z n = (Z n (i, j)) 1≤i,j≤p be a p multi-type critical branching process in random environment, and let M n be the expectation of Z n given a fixed environment. We prove theorems on convergence in distribution of sequences of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::35bf7e3cfd3b0c8f98df19b5cb3937ca
http://arxiv.org/abs/2006.10994
http://arxiv.org/abs/2006.10994
Publikováno v:
Annales de l'Institut Fourier
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 70 (3), pp.1307--1340
Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2020, 70 (3), pp.1307--1340
We present examples of geometrically finite manifolds with pinched negative curvature, whose geodesic flow has infinite non-ergodic Bowen-Margulis measure and whose Poincaré series converges at the critical exponent δ Γ. We obtain an explicit asym
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8507a998a9dcdaf9a44ede72375f4050
https://hal.archives-ouvertes.fr/hal-02155038
https://hal.archives-ouvertes.fr/hal-02155038
Publikováno v:
Latin American Journal of Probability and Mathematical Statistics. 18:1007
Publikováno v:
Ann. Probab. 46, no. 5 (2018), 2946-2972
Conditioned on the generating functions of offspring distribution, we study the asymp-totic behaviour of the probability of non-extinction of a critical multi-type Galton-Watson process in i.i.d. random environments by using limits theorems for produ