Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Marc Masdeu"'
Publikováno v:
Journal de Théorie des Nombres de Bordeaux. 33:809-834
Publikováno v:
Advances in Mathematics. 406:108484
For modular elliptic curves over number fields of narrow class number one, and with multiplicative reduction at a collection of p-adic primes, we define new p-adic invariants. Inspired by Nekovar and Scholl's plectic conjectures, we believe these inv
Publikováno v:
Research in the Mathematical Sciences. 8
Rigid meromorphic cocycles were introduced by Darmon and Vonk as a conjectural p-adic extension of the theory of singular moduli to real quadratic base fields. They are certain cohomology classes of $${{\,\mathrm{SL}\,}}_2(\mathbb {Z}[1/p])$$ which c
Autor:
Marc Masdeu, Xavier Guitart
Publikováno v:
Automorphic Forms and Related Topics. :75-83
Autor:
Marc Masdeu, Marco Adamo Seveso
Publikováno v:
Journal of Pure and Applied Algebra. 222:3075-3123
If for a vector space V of dimension g over a characteristic zero field we denote by ∧ i V ∧ i V its alternating powers, and by V ∨ V ∨ its linear dual, then there are natural Poincare isomorphisms: ∧ i V ∨ ≅∧ g−i V. ∧ i V ∨ ≅
Autor:
Marco Adamo Seveso, Marc Masdeu
Publikováno v:
Advances in Mathematics. 313:628-688
We define a motive whose realizations afford modular forms (of arbitrary weight) on an indefinite division quaternion algebra. This generalizes work of Iovita--Spiess to odd weights in the spirit of Jordan--Livn\'e. It also generalizes a construction
Publikováno v:
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Universitat Politècnica de Catalunya (UPC)
We give archimedean and non-archimedean constructions of Darmon points on modular abelian varieties attached to automorphic forms over arbitrary number fields and possibly non-trivial central character. An effort is made to present a unifying point o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53edbaedb428af10c9401c0d43d91c8e
http://hdl.handle.net/2445/193425
http://hdl.handle.net/2445/193425
Publikováno v:
Journal of Algebra
The Langlands Programme predicts that a weight 2 newform f over a number field K with integer Hecke eigenvalues generally should have an associated elliptic curve E_f over K. In our previous paper, we associated, building on works of Darmon and Green
Autor:
Marc Masdeu, Cameron Franc
Publikováno v:
LMS Journal of Computation and Mathematics. 17:1-23
We describe algorithms that allow the computation of fundamental domains in the Bruhat–Tits tree for the action of discrete groups arising from quaternion algebras. These algorithms are used to compute spaces of rigid modular forms of arbitrary eve
Autor:
Xavier Guitart, Marc Masdeu
Publikováno v:
Dipòsit Digital de la UB
Universidad de Barcelona
Experimental Mathematics
Recercat. Dipósit de la Recerca de Catalunya
instname
Universidad de Barcelona
Experimental Mathematics
Recercat. Dipósit de la Recerca de Catalunya
instname
Let F be a number field and N an integral ideal in its ring of integers. Let f be a modular newform over F of level Gamma0(N) with rational Fourier coefficients. Under certain additional conditions, Guitart-Masdeu-Sengun constructed a p-adic lattice
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5177eac4a77e16b526cccaf2e623ff0f
http://hdl.handle.net/2445/142925
http://hdl.handle.net/2445/142925