Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Marc Giusti"'
Autor:
Jean-Claude Yakoubsohn, Marc Giusti
Publikováno v:
Annales Henri Lebesgue. 3:901-957
The approximation of a multiple isolated root is a dicult problem. In fact the root can even be arepulsive root for a fixed point method like the Newton method. However there exists a huge literature on this topic but the answers given are not satisf
Publikováno v:
Foundations of Computational Mathematics. 15:159-184
Let V be a smooth equidimensional quasi-affine variety of dimension r over the complex numbers $C$ and let $F$ be a $(p\times s)$-matrix of coordinate functions of $C[V]$, where $s\ge p+r$. The pair $(V,F)$ determines a vector bundle $E$ of rank $s-p
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variable
Publikováno v:
Recent Advances in Real Complexity and Computation. :55-70
Autor:
Marc Giusti, Kenza Guenda
Publikováno v:
Applicable Algebra in Engineering, Communication and Computing. 28:281-282
Publikováno v:
Information Processing Letters. 109:1141-1144
In previous work we designed an efficient procedure that finds an algebraic sample point for each connected component of a smooth real complete intersection variety. This procedure exploits geometric properties of generic polar varieties and its comp
Publikováno v:
Foundations of Computational Mathematics. 3:347-420
In this paper we investigate the intrinsic sequential time complexity of universal elimination procedures for arbitrary continuous data structures encoding input and output objects of elimination theory (i.e. polynomial equation systems) and admittin
Publikováno v:
Mathematische Zeitschrift. 238:115-144
Let $S_0$ be a smooth and compact real variety given by a reduced regular sequence of polynomials $f_1, ..., f_p$. This paper is devoted to the algorithmic problem of finding {\em efficiently} a representative point for each connected component of $S
Publikováno v:
Journal of Complexity
Journal of Complexity, 2001, 17 (1), pp.154-211
Journal of Complexity, Elsevier, 2001, 17 (1), pp.154-211
Journal of Complexity, 2001, 17 (1), pp.154-211
Journal of Complexity, Elsevier, 2001, 17 (1), pp.154-211
Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolutio
Publikováno v:
Journal of Symbolic Computation. 45(12):1251-1253