Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Marats Golovkins"'
Publikováno v:
Theoretical Computer Science. 410(20):1942-1951
We analyze the properties of probabilistic reversible decide-and-halt automata (DH-PRA) and show that there is a strong relationship between DH-PRA and 1-way quantum automata. We show that a general class of regular languages is not recognizable by D
Autor:
Martin Beaudry, Marats Golovkins, Andris Ambainis, Denis Thérien, Arnolds Kikusts, Mark Mercer
Publikováno v:
Theory of Computing Systems. 39:165-188
We use tools from the algebraic theory of automata to investigate the class of languages recognized by two models of Quantum Finite Automata (QFA): Brodsky and Pippenger's end-decisive model (which we call BPQFA) and a new QFA model (which we call LQ
Publikováno v:
Mathematical Foundations of Computer Science 2011 ISBN: 9783642229923
MFCS
MFCS
We study the recognition of R-trivial idempotent (R1) languages by various models of "decide-and-halt" quantum finite automata (QFA) and probabilistic reversible automata (DH-PRA). We introduce bistochastic QFA (MM-BQFA), a model which generalizes bo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8d964c903fcdbbebcc12a45eb766f6bd
https://doi.org/10.1007/978-3-642-22993-0_33
https://doi.org/10.1007/978-3-642-22993-0_33
Autor:
Jean-Eric Pin, Marats Golovkins
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540369257
COCOON
Computing and Combinatorics: 12th Annual International Conference, COCOON 2006
COCOON
Computing and Combinatorics: 12th Annual International Conference, COCOON 2006
Reversible finite automata with halting states (RFA) were first considered by Ambainis and Freivalds to facilitate the research of Kondacs-Watrous quantum finite automata. In this paper we consider some of the algebraic properties of RFA, namely the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6164731deba88fd2c01a75875abce3a1
https://doi.org/10.1007/11809678_11
https://doi.org/10.1007/11809678_11
Autor:
Andris Ambainis, Arnolds Ķikusts, Denis Thérien, Martin Beaudry, Mark Mercer, Marats Golovkins
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540212362
STACS
STACS
We use tools from the algebraic theory of automata to investigate the class of languages recognized by two models of Quantum Finite Automata (QFA): Brodsky and Pippenger’s end-decisive model, and a new QFA model whose definition is motivated by imp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4a166a899ad391071ce6c83943274d71
https://doi.org/10.1007/978-3-540-24749-4_9
https://doi.org/10.1007/978-3-540-24749-4_9
Autor:
Marats Golovkins, Maksim Kravtsev
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783540439967
COCOON
COCOON
To study relationship between quantum finite automata and probabilistic finite automata, we introduce a notion of probabilistic reversible automata (PRA, or doubly stochastic automata). We find that there is a strong relationship between different po
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::264ec216625d0990bb1e078ccc3ee28d
https://doi.org/10.1007/3-540-45655-4_61
https://doi.org/10.1007/3-540-45655-4_61
Autor:
Marats Golovkins
Publikováno v:
SOFSEM 2000: Theory and Practice of Informatics ISBN: 9783540413486
SOFSEM
SOFSEM
Quantum finite automata, as well as quantum pushdown automata were first introduced by C. Moore, J. P. Crutchfield [13]. In this paper we introduce the notion of quantum pushdown automata (QPA) in a non-equivalent way, including unitarity criteria, b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::af508d566e1cfd13a4bf4b1e20f220a0
https://doi.org/10.1007/3-540-44411-4_22
https://doi.org/10.1007/3-540-44411-4_22
Publikováno v:
SOFSEM’99: Theory and Practice of Informatics ISBN: 9783540666943
SOFSEM
SOFSEM
Quantum finite automata were introduced by C. Moore, J. P. Crutchfield [4], and by A. Kondacs and J. Watrous [3]. This notion is not a generalization of the deterministic finite automata. Moreover, in [3] it was proved that not all regular languages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c8e84c9e0b88b89ab2f43da48d34b5b0
https://doi.org/10.1007/3-540-47849-3_21
https://doi.org/10.1007/3-540-47849-3_21