Zobrazeno 1 - 10
of 12
pro vyhledávání: '"María S. Pérez-Hernández"'
Autor:
María S. Pérez-Hernández, Idafen Santana-Perez, Oscar Corcho, Ewa Deelman, Rafael Ferreira da Silva, Mats Rynge
Publikováno v:
Future Generation Computer Systems. 67:354-367
In the past decades, one of the most common forms of addressing reproducibility in scientific workflow-based computational science has consisted of tracking the provenance of the produced and published results. Such provenance allows inspecting inter
Autor:
Radu Tudoran, Gabriel Antoniu, María S. Pérez-Hernández, Stefano Bortoli, Alexandru Costan, Ovidiu-Cristian Marcu, Bogdan Nicolae
Publikováno v:
Second Workshop on Real-time and Stream Analytics in Big Data Colocates with the 2017 IEEE International Conference on Big Data
Second Workshop on Real-time and Stream Analytics in Big Data Colocates with the 2017 IEEE International Conference on Big Data, Dec 2017, Boston, United States. pp.1-6, ⟨10.1109/bigdata.2017.8258196⟩
2017 IEEE International Conference on Big Data (Big Data)
IEEE BigData
Second Workshop on Real-time and Stream Analytics in Big Data Colocates with the 2017 IEEE International Conference on Big Data, Dec 2017, Boston, United States. pp.1-6, ⟨10.1109/bigdata.2017.8258196⟩
2017 IEEE International Conference on Big Data (Big Data)
IEEE BigData
International audience; Big Data applications are rapidly moving from a batch-oriented execution model to a streaming execution model in order to extract value from the data in real-time. However, processing live data alone is often not enough: in ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cbfb1d124299e09db427e0ab6eed39d9
https://hal.inria.fr/hal-01649207
https://hal.inria.fr/hal-01649207
Autor:
Gabriel Antoniu, María S. Pérez-Hernández, Ovidiu-Cristian Marcu, Radu Tudoran, Bogdan Nicolae, Alexandru Costan
Publikováno v:
Workshop on the Integration of Extreme Scale Computing and Big Data Management and Analytics in conjunction with IEEE/ACM CCGrid 2017
Workshop on the Integration of Extreme Scale Computing and Big Data Management and Analytics in conjunction with IEEE/ACM CCGrid 2017, May 2017, Madrid, Spain. ⟨10.1109/ccgrid.2017.126⟩
2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)
HAL
CCGrid
Workshop on the Integration of Extreme Scale Computing and Big Data Management and Analytics in conjunction with IEEE/ACM CCGrid 2017, May 2017, Madrid, Spain. ⟨10.1109/ccgrid.2017.126⟩
2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)
HAL
CCGrid
International audience; We are now witnessing an unprecedented growth of data that needs to be processed at always increasing rates in order to extract valuable insights. Big Data streaming analytics tools have been developed to cope with the online
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9639b61984fe36a29d798aeb08df37ee
https://hal.inria.fr/hal-01530744/file/PID4664669.pdf
https://hal.inria.fr/hal-01530744/file/PID4664669.pdf
Publikováno v:
Scientific Programming, Vol 2015 (2015)
It is commonly agreed that in silico scientific experiments should be executable and repeatable processes. Most of the current approaches for computational experiment conservation and reproducibility have focused so far on two of the main components
Autor:
Sandro Fiore, Stergios V. Anastasiadis, André Brinkmann, Kostas Magoutis, María S. Pérez-Hernández, Adrien Lebre
Publikováno v:
Euro-Par 2013 Parallel Processing ISBN: 9783642400469
Nowadays we are facing an exponential growth of new data that is overwhelming the capabilities of companies, institutions and the society in general to manage and use it in a proper way. Ever-increasing investments in Big Data, cutting edge technolog
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e6a36ffcea7101760877cc0b9991189d
https://doi.org/10.1007/978-3-642-40047-6_23
https://doi.org/10.1007/978-3-642-40047-6_23
Publikováno v:
HPCS
Virtualized Infrastructures are a promising way for providing flexible and dynamic computing solutions for resource-consuming tasks. Scientific Workflows are one of these kind of tasks, as they need a large amount of computational resources during ce
Publikováno v:
2009 International Conference on Computational Science and Engineering.
Autor:
Rafael González-Cabero, Reuben Wright, María S. Pérez-Hernández, Asunción Gómez-Pérez, Oscar Corcho, Manuel Sánchez-Gestido
Publikováno v:
Proceedings of the 7th International Semantic Web Conference (ISWC2008) | 7th International Semantic Web Conference (ISWC2008) | October 27, 2008 | Karlsruhe, Germany
Archivo Digital UPM
Universidad Politécnica de Madrid
Lecture Notes in Computer Science ISBN: 9783540885634
FIRST
Scopus-Elsevier
ResearcherID
Archivo Digital UPM
Universidad Politécnica de Madrid
Lecture Notes in Computer Science ISBN: 9783540885634
FIRST
Scopus-Elsevier
ResearcherID
The use of Semantic Grid architecture eases the development of complex, flexible applications, in which several organisations are involved and where resources of diverse nature (data and computing elements) are shared. This is the situation in the Sp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a26f664796a9181114b92c387fbea856
http://oa.upm.es/2662/
http://oa.upm.es/2662/
Publikováno v:
Service-Oriented Computing – ICSOC 2007 ISBN: 9783540749738
ICSOC
Proceedings of the International Conference on Service Oriented Computing ICSOC 2005 | International Conference on Service Oriented Computing ICSOC 2005 | 14 December 2005 | Amsterdam, The Netherlands
Archivo Digital UPM
Universidad Politécnica de Madrid
ICSOC
Proceedings of the International Conference on Service Oriented Computing ICSOC 2005 | International Conference on Service Oriented Computing ICSOC 2005 | 14 December 2005 | Amsterdam, The Netherlands
Archivo Digital UPM
Universidad Politécnica de Madrid
The convergence of the Semantic Web and Grid technologies has resulted in the Semantic Grid. The great effort devoted in by the Semantic Web community to achieve the semantic markup of Web services (what we call Semantic Web Services) has yielded man
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e15b4b25c8874e14b13eb14dee588c9c
https://doi.org/10.1007/11596141_26
https://doi.org/10.1007/11596141_26
Autor:
Stefano Bortoli, Gabriel Antoniu, Bogdan Nicolae, Alexandru Costan, Radu Tudoran, María S. Pérez-Hernández, Ovidiu-Cristian Marcu
Publikováno v:
2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS)
ICDCS 2018-38th IEEE International Conference on Distributed Computing Systems
ICDCS 2018-38th IEEE International Conference on Distributed Computing Systems, Jul 2018, Vienna, Austria. pp.1480-1485, ⟨10.1109/ICDCS.2018.00152⟩
ICDCS
ICDCS 2018-38th IEEE International Conference on Distributed Computing Systems
ICDCS 2018-38th IEEE International Conference on Distributed Computing Systems, Jul 2018, Vienna, Austria. pp.1480-1485, ⟨10.1109/ICDCS.2018.00152⟩
ICDCS
International audience; Big Data applications are increasingly moving from batch-oriented execution models to stream-based models that enable them to extract valuable insights close to real-time. To support this model, an essential part of the stream
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c87c33cae8b587a44b474fdd4e1db22f