Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Mapping cone (topology)"'
Autor:
Haytham R. Hassan, Alaa Abbas Mansour
Publikováno v:
Iraqi Journal of Science. :4071-4080
The main aim of this paper is to study the application of Weyl module resolution in the case of two rows, which will be specified in the skew- partition (6, 6)/(1,1) and (6,6)/(1,0), by using the homological Weyl (i.e. the contracting homotopy and pl
Autor:
Nejood A. Hatim, Haytham R. Hassan
Publikováno v:
Iraqi Journal of Science. :3071-3080
The aim of this work is to study the application of Weyl module resolution in the case of two rows, which will be specified in the partition (7, 6) and skew- partition (7,6)/(1,0) by using the homological Weyl (i.e. the contracting homotopy and place
Publikováno v:
Iraqi Journal of Science. :1123-1135
The purpose of this paper is to study the application of Weyl module’s resolution in the case of two rows which will be specified in the partitions (7, 7) and (7, 7) / (1, 0), using the homological Weyl (i.e. the contracting homotopy and place
Autor:
Bojan Magajna
Publikováno v:
Positivity. 25:1-29
By analogy with the Choi matrix we associate an operator $$C_{\varphi }\in \mathrm{B}({\mathscr {H}})$$ to each weak* continuous $${\mathscr {A}}$$ -bimodule map $$\varphi :\mathrm{B}({\mathscr {K}})\rightarrow \mathrm{B}({\mathscr {H}})$$ , where $$
Autor:
Beata Casiday, Selvi Kara
Let $\mathcal{D}$ be a weighted oriented graph and $I(\mathcal{D})$ be its edge ideal. In this paper, we investigate the Betti numbers of $I(\mathcal{D})$ via upper-Koszul simplicial complexes, Betti splittings and the mapping cone construction. In p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c46ac737fdb613bd8efc52bb2551e37
http://arxiv.org/abs/2009.10903
http://arxiv.org/abs/2009.10903
Autor:
Robert Penner
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783030439958
Categorical versions of the mapping cone and mapping cylinder constructions from topology are given and their basic properties generalized.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::64d80c1b47dff8285351cffe32a980ae
https://doi.org/10.1007/978-3-030-43996-5_16
https://doi.org/10.1007/978-3-030-43996-5_16
Autor:
Leila Sharifan
Publikováno v:
Bulletin of the Iranian Mathematical Society. 44:1007-1024
In this paper, we study minimal free resolutions of some classes of monomial ideals. We first give a sufficient condition to check the minimality of the resolution obtained by the mapping cone. Using this condition, we obtain the Betti numbers of max
Over an infinite field $K$, we investigate the minimal free resolution of some configurations of lines. We explicitly describe the minimal free resolution of "complete grids of lines" and obtain an analogous result about the so-called "complete pseud
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5cb4538f40e32222d7cfa0b0c88eef8
Autor:
Bülent Tosun, Thomas E. Mark
Publikováno v:
Journal of Differential Geometry
J. Differential Geom. 110, no. 2 (2018), 281-344
J. Differential Geom. 110, no. 2 (2018), 281-344
For a nullhomologous Legendrian knot in a closed contact 3-manifold Y we consider a contact structure obtained by positive rational contact surgery. We prove that in this situation the Heegaard Floer contact invariant of Y is mapped by a surgery cobo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ed9c04b086800ccdb22bca13083171f6
https://hdl.handle.net/21.11116/0000-0003-C51E-E21.11116/0000-0003-C51F-D21.11116/0000-0003-C51C-0
https://hdl.handle.net/21.11116/0000-0003-C51E-E21.11116/0000-0003-C51F-D21.11116/0000-0003-C51C-0
Autor:
Fyodor Gainullin
Publikováno v:
Algebr. Geom. Topol. 17, no. 4 (2017), 1917-1951
We write down an explicit formula for the $+$ version of the Heegaard Floer homology (as an absolutely graded vector space over an arbitrary field) of the results of Dehn surgery on a knot $K$ in $S^3$ in terms of homological data derived from $CFK^{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::09b98d561cafa424b27bd7122a88f531
https://projecteuclid.org/euclid.agt/1510841433
https://projecteuclid.org/euclid.agt/1510841433