Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Mao-Ting Chien"'
Autor:
Mao-Ting Chien, Hiroshi Nakazato
Publikováno v:
Mathematics, Vol 8, Iss 12, p 2119 (2020)
A hyperbolic ternary form, according to the Helton–Vinnikov theorem, admits a determinantal representation of a linear symmetric matrix pencil. A kernel vector function of the linear symmetric matrix pencil is a solution to the inverse numerical ra
Externí odkaz:
https://doaj.org/article/f67f93220c4443ce901e37cb0e26bad1
Autor:
Mao-Ting Chien
Publikováno v:
Mathematics, Vol 8, Iss 5, p 830 (2020)
Let A be an n-by-n matrix. The numerical range of A is defined as W ( A ) = { x * A x : x ∈ C n , x * x = 1 } . The Moore–Penrose inverse A + of A is the unique matrix satisfying A A + A = A , A + A A + = A + , ( A A + ) * = A A + , and ( A + A )
Externí odkaz:
https://doaj.org/article/ef5c946ae71d4e88913615edf7c7c38f
Autor:
Mao-Ting Chien, Hiroshi Nakazato
Publikováno v:
Symmetry, Vol 10, Iss 3, p 55 (2018)
Let A be an n × n complex matrix. Assume the determinantal curve V A = { [ ( x , y , z ) ] ∈ CP 2 : F A ( x , y , z ) = det ( x ℜ ( A ) + y ℑ ( A ) + z I n ) = 0 } is a rational curve. The Fie
Externí odkaz:
https://doaj.org/article/bed42f50e4fb4e0a99aa1c79ed9ee8ce
Autor:
Mao-Ting Chien, Hiroshi Nakazato
Publikováno v:
Linear Algebra and its Applications. 662:49-66
Autor:
Hiroshi Nakazato, Mao-Ting Chien
Publikováno v:
Linear Algebra and its Applications. 633:227-243
Let A be an n × n matrix. The Hermitian parts of A are denoted by ℜ ( A ) = ( A + A ⁎ ) / 2 and ℑ ( A ) = ( A − A ⁎ ) / ( 2 i ) . The kernel vectors of the linear pencil x ℜ ( A ) + y ℑ ( A ) + z I n play a role for the inverse numeric
Autor:
Hiroshi Nakazato, Mao-Ting Chien
Publikováno v:
Linear Algebra and its Applications. 626:20-33
Let A be an n-by-n matrix and M ( x , y , z ) = z I n + x ℜ ( A ) + y ℑ ( A ) , where ℜ ( A ) = ( A + A ⁎ ) / 2 and ℑ ( A ) = ( A − A ⁎ ) / ( 2 i ) . The inverse numerical range problem seeks a unit vector x corresponding to a given poi
Autor:
Hiroshi Nakazato, Mao-Ting Chien
Publikováno v:
Linear Algebra and its Applications. 611:356-364
We prove that a weighted shift matrix is unitarily similar to a complex symmetric matrix if and only if its weight sequence is reversible or 2-pivot reversible.
Autor:
Mao-Ting Chien, Hiroshi Nakazato
Publikováno v:
Banach Journal of Mathematical Analysis. 16
Autor:
Mao-Ting Chien, Hiroshi Nakazato
Publikováno v:
The Electronic Journal of Linear Algebra. 36:47-54
We prove that every cyclic weighted shift matrix with pivot-reversible weights is unitarily similar to a complex symmetric matrix.
Autor:
Mao-Ting Chien, Hiroshi Nakazato
Publikováno v:
Linear and Multilinear Algebra. 69:888-906
We classify the graphs which describe the monodromy structure of the Riemann surfaces of smooth quartic hyperbolic curves. The combinatorial classification provides a method to construct the homolo...