Zobrazeno 1 - 10
of 938
pro vyhledávání: '"Manzini, G"'
We present a low order virtual element discretization for time dependent Maxwell's equations, which allow for the use of general polyhedral meshes. Both the semi- and fully-discrete schemes are considered. We derive optimal a priori estimates and val
Externí odkaz:
http://arxiv.org/abs/2102.00950
We present a virtual element method (VEM) for the numerical approximation of the electromagnetics subsystem of the resistive magnetohydrodynamics (MHD) model in two spatial dimensions. The major advantages of the virtual element method include great
Externí odkaz:
http://arxiv.org/abs/2004.11467
We design the conforming virtual element method for the numerical approximation of the two dimensional elastodynamics problem. We prove stability and convergence of the semi-discrete approximation and derive optimal error estimates under $h$- and $p$
Externí odkaz:
http://arxiv.org/abs/1912.07122
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Mathematics and Computers in Simulation September 2023 211:301-328
Publikováno v:
In Mathematics and Computers in Simulation August 2023 210:615-639
We discuss the $p$- and the $hp$-versions of the virtual element method for the approximation of eigenpairs of elliptic operators with a potential term on polygonal meshes. An application of this model is provided by the Schr\"odinger equation with a
Externí odkaz:
http://arxiv.org/abs/1812.09220
Publikováno v:
In Computer Physics Communications March 2023 284
In this work, we exploit the capability of virtual element methods in accommodating approximation spaces featuring high-order continuity to numerically approximate differential problems of the form $\Delta^p u =f$, $p\ge1$. More specifically, we deve
Externí odkaz:
http://arxiv.org/abs/1811.04317
An explicit and computable error estimator for the $hp$ version of the virtual element method (VEM), together with lower and upper bounds with respect to the exact energy error, is presented. Such error estimator is employed to provide $hp$ adaptive
Externí odkaz:
http://arxiv.org/abs/1804.07898