Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Manzaroli, Matilde"'
It goes back to Ahlfors that a real algebraic curve admits a real-fibered morphism to the projective line if and only if the real part of the curve disconnects its complex part. Inspired by this result, we are interested in characterising real algebr
Externí odkaz:
https://tud.qucosa.de/id/qucosa%3A91377
https://tud.qucosa.de/api/qucosa%3A91377/attachment/ATT-0/
https://tud.qucosa.de/api/qucosa%3A91377/attachment/ATT-0/
Autor:
Manzaroli, Matilde
It is well known that a non-singular real plane projective curve of degree five with five connected components is separating if and only if its ovals are in non-convex position. In this article, this property is set into a different context and gener
Externí odkaz:
http://arxiv.org/abs/2404.09671
Autor:
Manzaroli, Matilde
It goes back to Ahlfors that a real algebraic curve $C$ admits a separating morphism $f$ to the complex projective line if and only if the real part of the curve disconnects its complex part, i.e. the curve is \textit{separating}. The degree of such
Externí odkaz:
http://arxiv.org/abs/2211.16805
Autor:
Ambrosi, Emiliano, Manzaroli, Matilde
Let $X\rightarrow C$ be a totally real semistable degeneration over a smooth real curve $C$ with degenerate fiber $X_0$. Assuming that the irreducible components of $X_0$ are simple from a cohomological point of view, we give a bound for the individu
Externí odkaz:
http://arxiv.org/abs/2211.12134
Autor:
Manzaroli, Matilde
L’étude topologique des variétés algébriques réelles remonte au moins aux travaux de Harnack, Klein, et Hilbert au 19éme siecle; en particulier, la classification des types d’isotopie réalisés par les courbes algébriques réelles d’un
Externí odkaz:
http://www.theses.fr/2019SACLX017/document
It goes back to Ahlfors that a real algebraic curve admits a real-fibered morphism to the projective line if and only if the real part of the curve disconnects its complex part. Inspired by this result, we are interested in characterising real algebr
Externí odkaz:
http://arxiv.org/abs/2101.08703
Autor:
Manzaroli, Matilde
Publikováno v:
International Mathematics Research Notices, rnaa169, 2020
The study of the topology of real algebraic varieties dates back to the work of Harnack, Klein and Hilbert in the 19th century; in particular, the isotopy type classification of real algebraic curves in real toric surfaces is a classical subject that
Externí odkaz:
http://arxiv.org/abs/1912.07708
Autor:
Manzaroli, Matilde
Publikováno v:
Algebra i Analiz, 32(2):107-142, 2020
We complete the topological classification of real algebraic non-singular curves of bidegree $(5, 5)$ on the quadric ellipsoid. We show in particular that previously known restrictions form a complete system for this bidegree. Therefore, the main par
Externí odkaz:
http://arxiv.org/abs/1809.03946
Publikováno v:
Discrete & Computational Geometry; Apr2023, Vol. 69 Issue 3, p849-872, 24p
Autor:
Manzaroli, Matilde
It goes back to Ahlfors that a real algebraic curve $C$ admits a separating morphism $f$ to the complex projective line if and only if the real part of the curve disconnects its complex part, i.e. the curve is separating. The degree of such $f$ is bo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ab9695ecb7ac8ff0677ced51992ddfb