Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Manzano, Jose M."'
We consider a Riemannian submersion from a 3-manifold $\mathbb{E}$ to a surface $M$, both connected and orientable, whose fibers are the integral curves of a Killing vector field without zeros, not necessarily unitary. We solve the Jenkins-Serrin pro
Externí odkaz:
http://arxiv.org/abs/2306.12195
Publikováno v:
Mathematische Nachrichten 297 (2024), no. 5, 1581-1600
We develop a conformal duality for spacelike graphs in Riemannian and Lorentzian three-manifolds that admit a Riemannian submersion over a Riemannian surface whose fibers are the integral curves of a Killing vector field, which is timelike in the Lor
Externí odkaz:
http://arxiv.org/abs/2306.00562
Autor:
Manzano, José M.
Publikováno v:
Journal of Mathematical Analysis and Applications 531 (2024), no. 1 (part 2), 127878
We consider constant mean curvature surfaces (invariant by a continuous group of isometries) lying at bounded distance from a horizontal geodesic on any homogeneous $3$-manifold $\mathbb{E}(\kappa,\tau)$ with isometry group of dimension $4$. These su
Externí odkaz:
http://arxiv.org/abs/2305.09014
Autor:
Wattanachayakul, Phuuwadith, Martinez Manzano, Jose M., Geller, Andrew, Malin, John, Leguizamon, Raul, John, Tara A., Khan, Rasha, McLaren, Ian, Prendergast, Alexander, Jarrett, Simone A., Sarvottam, Kumar, Lo, Kevin B.
Publikováno v:
In Journal of Clinical and Experimental Hepatology November-December 2024 14(6)
Publikováno v:
In: Alarc\'on, A., Palmer, V., Rosales, C. (eds) New Trends in Geometric Analysis. RSME Springer Series, vol 10 (2023), 43-118. Springer, Cham. ISBN: 978-3-031-39915-2
This survey paper investigates, from a purely geometric point of view, Daniel's isometric conjugation between minimal and constant mean curvature surfaces immersed in homogeneous Riemannian three-manifolds with isometry group of dimension four. On th
Externí odkaz:
http://arxiv.org/abs/2203.13162
Autor:
Manzano, José M.
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 March 2024 531(1) Part 2
Autor:
Martinez Manzano, Jose M.1 (AUTHOR) jose.martinezmanzano@jefferson.edu, Prendergast, Alexander1 (AUTHOR), John, Tara1 (AUTHOR), Leguizamon, Raul1 (AUTHOR), McLaren, Ian1 (AUTHOR), Khan, Rasha1 (AUTHOR), Geller, Andrew1 (AUTHOR), Wattanachayakul, Phuuwadith1 (AUTHOR), Malin, John1 (AUTHOR), Jarrett, Simone A.1 (AUTHOR), Lo, Kevin Bryan1 (AUTHOR), Benzaquen, Sadia2 (AUTHOR), Witzke, Christian3 (AUTHOR)
Publikováno v:
Pulmonary Circulation. Apr2024, Vol. 14 Issue 2, p1-7. 7p.
Publikováno v:
International Mathematics Research Notices 2022 (2022), no. 19, 14605-14638
We show the existence of a $2$-parameter family of properly Alexandrov-embedded surfaces with constant mean curvature $0\leq H\leq\frac{1}{2}$ in ${\mathbb{H}^2\times\mathbb{R}}$. They are symmetric with respect to a horizontal slice and a $k$ vertic
Externí odkaz:
http://arxiv.org/abs/2012.13192
Autor:
Manzano, José M., Torralbo, Francisco
We obtain a $1$-parameter family of horizontal Delaunay surfaces with positive constant mean curvature in $\mathbb{S}^2\times\mathbb{R}$ and $\mathbb{H}^2\times\mathbb{R}$, being the mean curvature larger than $\frac{1}{2}$ in the latter case. These
Externí odkaz:
http://arxiv.org/abs/2007.06882
Publikováno v:
Journal of the Instute of Mathematics of Jussieu 22 (2023), no. 5, 2155-2175
For each $k\geq 3$, we construct a 1-parameter family of complete properly Alexandrov-embedded minimal surfaces in the Riemannian product space $\mathbb{H}^2\times\mathbb{R}$ with genus $1$ and $k$ embedded ends asymptotic to vertical planes. We also
Externí odkaz:
http://arxiv.org/abs/2001.07028