Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Manuel Martín Merino"'
Autor:
Manuel Martín Merino, Alfonso José López Rivero, Vidal Alonso, Marcelo Vallejo, Antonio Ferreras
Publikováno v:
International Journal of Interactive Multimedia and Artificial Intelligence, Vol 7, Iss 6, Pp 6-13 (2022)
Clustering algorithms such as k-means depend heavily on choosing an appropriate distance metric that reflect accurately the object proximities. A wide range of dissimilarities may be defined that often lead to different clustering results. Choosing t
Externí odkaz:
https://doaj.org/article/9f0fa2ac2e7e4ae29184f16272ce671d
Publikováno v:
Disertaciones, Vol 13, Iss 1 (2020)
Los cambios producidos en los últimos años en cuanto a modelos de comunicación social han llevado a todos los sectores a adaptarse a los nuevos medios para alcanzar a su público. La comunicación de la ciencia no es una excepción. La manera en q
Externí odkaz:
https://doaj.org/article/b0b814766dbf4e8f954f7cf50d9966f0
Autor:
Jorge Martinez-Romero, Santiago Bueno-Fortes, Manuel Martín-Merino, Ana Ramirez de Molina, Javier De Las Rivas
Publikováno v:
BMC Genomics, Vol 19, Iss S8, Pp 45-60 (2018)
Abstract Background Identification of biomarkers associated with the prognosis of different cancer subtypes is critical to achieve better therapeutic assistance. In colorectal cancer (CRC) the discovery of stable and consistent survival markers remai
Externí odkaz:
https://doaj.org/article/6ceb4172bdec44a99de9229486b2c095
Autor:
Vidal Alonso-Secades, Alfonso-José López-Rivero, Manuel Martín-Merino-Acera, Manuel-José Ruiz-García, Olga Arranz-García
Publikováno v:
Electronics; Volume 11; Issue 9; Pages: 1487
Incorporating technology into virtual education encourages educational institutions to demand a migration from the current learning management system towards an intelligent virtual educational system, seeking greater benefit by exploiting the data ge
Autor:
Manuel Martín-Merino, Ángela Blanco
Publikováno v:
Journal of Intelligent Information Systems. 33:23-40
Sammon's mapping is a powerful non-linear technique that allow us to visualize high dimensional object relationships. It has been applied to a broad range of practical problems and particularly to the visualization of the semantic relations among ter
Autor:
Manuel Martín-Merino, Alberto Muñoz
Publikováno v:
Neurocomputing. 63:171-192
Multidimensional scaling (MDS) and self organizing maps (SOM) algorithms are useful to visualize object relationships in a data set. These algorithms rely on the use of symmetric distances or similarity measures; for instance the Euclidean distance.
Autor:
Manuel Martín-Merino
Publikováno v:
Encyclopedia of Information Science and Technology, Third Edition ISBN: 9781466658882
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5dd1abca47cf224d1aa1a2ff4299dac1
https://doi.org/10.4018/978-1-4666-5888-2.ch721
https://doi.org/10.4018/978-1-4666-5888-2.ch721
Autor:
Manuel Martín-Merino
DNA Microarrays allow for monitoring the expression level of thousands of genes simultaneously across a collection of related samples. Supervised learning algorithms such as k-NN or SVM (Support Vector Machines) have been applied to the classificatio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ca9feeb82117c5d0c96489e6768d20d0
https://doi.org/10.4018/978-1-4666-3604-0.ch084
https://doi.org/10.4018/978-1-4666-3604-0.ch084
Autor:
Manuel Martín-Merino
Publikováno v:
Advances in Computational Intelligence ISBN: 9783642215001
IWANN (1)
IWANN (1)
Pattern Recognition algorithms depend strongly on the dissimilarity considered to evaluate the sample proximities. In real applications, several dissimilarities are available that may come from different object representations or data sources. Each d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fa8e8b1bceb5edfd0531e169b2b741e2
https://doi.org/10.1007/978-3-642-21501-8_12
https://doi.org/10.1007/978-3-642-21501-8_12
Autor:
Manuel, Martín-Merino
Publikováno v:
Advances in experimental medicine and biology. 680
The [Formula: see text]-Nearest Neighbor (k-NN) classifier has been applied to the identification of cancer samples using the gene expression profiles with encouraging results. However, the performance of [Formula: see text]-NN depends strongly on th