Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Manuel Krannich"'
Publikováno v:
Mathematische Annalen
Given a closed smooth manifold $M$ of even dimension $2n\ge6$ with finite fundamental group, we show that the classifying space ${\rm BDiff}(M)$ of the diffeomorphism group of $M$ is of finite type and has finitely generated homotopy groups in every
Publikováno v:
Proceedings of the Royal Society of Edinburgh: Section A Mathematics
We prove a stability theorem for spaces of smooth concordance embeddings. From it we derive various applications to spaces of concordance diffeomorphisms and homeomorphisms.
27 pages, 6 figures, to appear in Proceedings of the Royal Society of E
27 pages, 6 figures, to appear in Proceedings of the Royal Society of E
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::16a929bb97ab2d27d24d5b4c708a3e38
Publikováno v:
Comptes Rendus. Mathématique. 359:149-154
Autor:
Oscar Randal-Williams, Manuel Krannich
Publikováno v:
Comptes Rendus. Mathématique
It is well known that Sullivan showed that the mapping class group of a simply connected high-dimensional manifold is commensurable with an arithmetic group, but the meaning of "commensurable" in this statement seems to be less well known. We explain
Publikováno v:
Comptes Rendus. Mathématique
Autor:
Manuel Krannich
Publikováno v:
The Quarterly Journal of Mathematics
By work of Berglund and Madsen, the rings of rational characteristic classes of fibrations and smooth block bundles with fibre $D^{2n}\sharp(S^n\times S^n)^{\sharp g}$, relative to the boundary, are for $2n\ge 6$ independent of $g$ in degrees $*\le (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c26a70c300e8834d17d80a5055eb1e73
Autor:
Manuel Krannich
Publikováno v:
Selecta Mathematica
We compute the mapping class group of the manifolds $\sharp^g(S^{2k+1}\times S^{2k+1})$ for $k>0$ in terms of the automorphism group of the middle homology and the group of homotopy $(4k+3)$-spheres. We furthermore identify its Torelli subgroup, dete
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bcfb002cec418b9eec400daf92c92b07
Autor:
Manuel Krannich
Publikováno v:
Mathematische Annalen
Given a closed simply connected manifold $M$ of dimension $2n\ge6$, we compare the ring of characteristic classes of smooth oriented bundles with fibre $M$ to the analogous ring resulting from replacing $M$ by the connected sum $M\sharp\Sigma$ with a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a065e6521dd06bc4085e331ec369df3
http://arxiv.org/abs/1802.02609
http://arxiv.org/abs/1802.02609
Autor:
Manuel Krannich
Publikováno v:
Geometry & Topology
Geom. Topol. 23, no. 5 (2019), 2397-2474
Geom. Topol. 23, no. 5 (2019), 2397-2474
Given a graded $E_1$-module over an $E_2$-algebra in spaces, we construct an augmented semi-simplicial space up to higher coherent homotopy over it, called its canonical resolution, whose graded connectivity yields homological stability for the grade
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89201bb53a830c805e8e3d17f4b10c37
http://arxiv.org/abs/1710.08484
http://arxiv.org/abs/1710.08484
Autor:
Alexander Kupers, Manuel Krannich
Publikováno v:
Proceedings of the American Mathematical Society
We compute the first two symplectic quadratic K-theory groups of the integers, or equivalently, the first two stable homology groups of the group of symplectic integral matrices preserving the standard quadratic refinement. The main novelty in our ca