Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Manuel Gil-Martín"'
Publikováno v:
Scientific Data, Vol 11, Iss 1, Pp 1-14 (2024)
Abstract This paper presents Multi-view Leap2 Hand Pose Dataset (ML2HP Dataset), a new dataset for hand pose recognition, captured using a multi-view recording setup with two Leap Motion Controller 2 devices. This dataset encompasses a diverse range
Externí odkaz:
https://doaj.org/article/497eecc240ca4da489127fcd9c936510
Autor:
Manuel Gil-Martín, Cristina Luna-Jiménez, Sergio Esteban-Romero, Marcos Estecha-Garitagoitia, Fernando Fernández-Martínez, Luis Fernando D’Haro
Publikováno v:
Scientific Data, Vol 11, Iss 1, Pp 1-11 (2024)
Abstract This paper introduces Art_GenEvalGPT, a novel dataset of synthetic dialogues centered on art generated through ChatGPT. Unlike existing datasets focused on conventional art-related tasks, Art_GenEvalGPT delves into nuanced conversations abou
Externí odkaz:
https://doaj.org/article/f5bc4e49571c46e18e22c916fd94966e
Publikováno v:
Engineering Proceedings, Vol 58, Iss 1, p 69 (2023)
Hand pose recognition presents significant challenges that need to be addressed, such as varying lighting conditions or complex backgrounds, which can hinder accurate and robust hand pose estimation. This can be mitigated by employing MediaPipe to fa
Externí odkaz:
https://doaj.org/article/61f860379960464087f027e1b32d1a24
Autor:
María Villa-Monedero, Manuel Gil-Martín, Daniel Sáez-Trigueros, Andrzej Pomirski, Rubén San-Segundo
Publikováno v:
Journal of Imaging, Vol 9, Iss 12, p 262 (2023)
Several sign language datasets are available in the literature. Most of them are designed for sign language recognition and translation. This paper presents a new sign language dataset for automatic motion generation. This dataset includes phonemes f
Externí odkaz:
https://doaj.org/article/a58ad238ce434ef7b6a8057d0b4ce81a
Autor:
Manuel Gil-Martín, María Villa-Monedero, Andrzej Pomirski, Daniel Sáez-Trigueros, Rubén San-Segundo
Publikováno v:
Sensors, Vol 23, Iss 23, p 9365 (2023)
This paper proposes, analyzes, and evaluates a deep learning architecture based on transformers for generating sign language motion from sign phonemes (represented using HamNoSys: a notation system developed at the University of Hamburg). The sign ph
Externí odkaz:
https://doaj.org/article/305cda5287cd43049dde00d55eb551ef
Publikováno v:
Sensors, Vol 23, Iss 13, p 5845 (2023)
Sensor- orientation is a critical aspect in a Human Activity Recognition (HAR) system based on tri-axial signals (such as accelerations); different sensors orientations introduce important errors in the activity recognition process. This paper propos
Externí odkaz:
https://doaj.org/article/ac54ed24ea9d427fa1b431716672efee
Publikováno v:
Sensors, Vol 21, Iss 21, p 7110 (2021)
The Y Balance Test (YBT) is a dynamic balance assessment typically used in sports medicine. This work proposes a deep learning approach to automatically score this YBT by estimating the normalized reach distance (NRD) using a wearable sensor to regis
Externí odkaz:
https://doaj.org/article/8abcf27ddae7415d804981cdfbaa1165
Autor:
Cristina Luna-Jiménez, Jorge Cristóbal-Martín, Ricardo Kleinlein, Manuel Gil-Martín, José M. Moya, Fernando Fernández-Martínez
Publikováno v:
Applied Sciences, Vol 11, Iss 16, p 7217 (2021)
Spatial Transformer Networks are considered a powerful algorithm to learn the main areas of an image, but still, they could be more efficient by receiving images with embedded expert knowledge. This paper aims to improve the performance of convention
Externí odkaz:
https://doaj.org/article/cb7cfe640acc43919903262f58cf672c
Publikováno v:
Sensors; Volume 23; Issue 13; Pages: 5845
Sensor- orientation is a critical aspect in a Human Activity Recognition (HAR) system based on tri-axial signals (such as accelerations); different sensors orientations introduce important errors in the activity recognition process. This paper propos
Publikováno v:
Proceedings of the Northern Lights Deep Learning Workshop; Vol. 4 (2023): Proceedings of the Northern Lights Deep Learning Workshop 2023
The development of medical decision-support technologies that provide accurate biomarkers to physicians is an important research area. For example, in the case of Parkinson's Disease (PD), the current supervisions of patients become intrusive, occasi