Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Manuel Elgueta"'
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 08, Pp 85-101 (2002)
We describe the (finite-time) blow-up phenomenon for a non-negative solution of a porous medium equation of the form $$ u_t = Delta u^m + u^m $$ in the entire space. Here $m>1$ and the initial condition is assumed compactly supported. Blow-up takes p
Externí odkaz:
https://doaj.org/article/4907ee0db3b845c7828158aa1f412555
Publikováno v:
Advances in Nonlinear Analysis, Vol 6, Iss 1, Pp 1-12 (2017)
We consider the elliptic system Δ u = u p v q ${\Delta u\hskip-0.284528pt=\hskip-0.284528ptu^{p}v^{q}}$ , Δ v = u r v s ${\Delta v\hskip-0.284528pt=\hskip-0.284528ptu^{r}v^{s}}$ in Ω with the boundary conditions ∂ u / ∂
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 106:866-876
We consider the semilinear elliptic problem (0.1) { − Δ u = f ( u ) in R + N u = 0 on ∂ R + N where the nonlinearity f is assumed to be C 1 and globally Lipschitz with f ( 0 ) 0 , and R + N = { x ∈ R N : x N > 0 } stands for the half-space. De
Publikováno v:
Journal of Mathematical Analysis and Applications. 436:586-610
We study the long time behavior of bounded, integrable solutions to a nonlocal diffusion equation, $\partial _t u=J*u-u$, where $J$ is a smooth, radially symmetric kernel with support $B_d(0)\subset\mathbb{R}^2$. The problem is set in an exterior two
Publikováno v:
Journal of Evolution Equations. 16:209-232
We consider the following nonlocal equation $$\int J\left(\frac{x-y}{g(y)} \right) \frac{u(y)}{g(y)} dy -u(x)=0\qquad x\in \mathbb{R},$$ where J is an even, compactly supported, Holder continuous kernel with unit integral and g is a continuous positi
In this work we consider the boundary blow-up problem $$ \left\{ \begin{array}{ll} ��u = f(u) & \hbox{in } B\\ \ \ u=+\infty & \hbox{on }\partial B \end{array} \right. $$ where $B$ stands for the unit ball of $\mathbb{R}^N$ and $f$ is a locally L
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d273555f3d30ce482ed7d199b9aecf01
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We study the long time behavior of solutions to the nonlocal diffusion equation $\partial_t u=J*u-u$ in an exterior one-dimensional domain, with zero Dirichlet data on the complement. In the far field scale, $\xi_1\le|x|t^{-1/2}\le\xi_2$, $\xi_1,\xi_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d6ab7fad40c18bb23d05271310790cc9
http://epubs.siam.org/doi/abs/10.1137/151006287
http://epubs.siam.org/doi/abs/10.1137/151006287
Publikováno v:
SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
We consider the nonlocal evolution Dirichlet problem $u_t(x,t)=\int_{\Omega}J(\frac{x-y}{g(y)})\frac{u(y,t)}{g(y)^N}dy-u(x,t)$, $x\in\Omega$, $t>0$; $u=0$, $x\in\mathbb{R}^N\setminus\Omega$, $t\ge0$; $u(x,0)=u_0(x)$, $x\in\mathbb{R}^N$; where $\Omega
Autor:
Carmen Cortázar, Manuel Elgueta
Publikováno v:
MAT Serie A. 15:17-24