Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Mansouri, M. W."'
In this paper, we are interested in solvable complete Lie algebras, over the field $\K=\R$ or $\mathbb{C}$, which admit a symplectic structure. Specifically, important classes are studied, and a description of complete Lie Algebra with the dimension
Externí odkaz:
http://arxiv.org/abs/2406.18773
Autor:
bourkadi, S. El, Mansouri, M. W.
We introduce the notion of cosymplectic structure on Jacobi-Jordan algebras, and we state that they are related to symplectic Jacobi-Jordan algebras. We show, in particular, that they support a right-skew-symmetric product. We also study the double e
Externí odkaz:
http://arxiv.org/abs/2405.15785
Autor:
Mansouri, M. W., Oufkou, A.
We study Hermitian structures on twisted cartesian products $(\mathfrak{g}_{(\rho_{1},\rho_{2})},\mathrm{J},\cal{K})$ of two Hermitian Lie algebras according to two representations $\rho_{1}$ and $\rho_{2}$. We give the conditions on $(\mathfrak{g}_{
Externí odkaz:
http://arxiv.org/abs/2402.13390
In this paper, we give a complete classification of symplectic structures on six-dimensional Frobeniusian solvable Lie algebras, up to symplectomorphism. We provide a scheme to classify the isomorphism classes of six-dimensional Frobeniusian solvable
Externí odkaz:
http://arxiv.org/abs/2402.00605
Autor:
Aissa, T. Aït, Mansouri, M. W.
In this paper, we classify eight-dimensional non-solvable Lie algebras that support a symplectic structure. As well as a complete classification is given, up to symplectomorphism, of eight-dimensional symplectic non-solvable Lie algebras.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/2210.13523
Autor:
bourkadi, S. El, Mansouri, M. W.
We give some properties of cosymplectic Lie algebras, we show, in particular, that they support a left symmetric product. We also give some constructions of cosymplectic Lie algebras, as well as a classification in three and five-dimensional cosymple
Externí odkaz:
http://arxiv.org/abs/2204.01569
Autor:
Mansouri M. W., Oufkou A.
Publikováno v:
Complex Manifolds, Vol 9, Iss 1, Pp 1-17 (2022)
We give a complete classification of left invariant para-Kähler structures on four-dimensional simply connected Lie groups up to an automorphism. As an application we discuss some curvatures properties of the canonical connection associated to these
Externí odkaz:
https://doaj.org/article/eb8da038dab645768fd3df067bc9eb98
Autor:
Aït Aissa, T., Mansouri, M. W.
Publikováno v:
Communications in Algebra; 2024, Vol. 52 Issue 3, p1196-1218, 23p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.