Zobrazeno 1 - 10
of 118
pro vyhledávání: '"Manseob Lee"'
Autor:
Manseob Lee
Publikováno v:
Electronic Research Archive, Vol 30, Iss 7, Pp 2406-2416 (2022)
In the manuscript, we deal with a type of pseudo orbit tracing property and hyperbolicity about a vector field (or a divergence free vector field). We prove that a vector field (or a divergence free vector field) of a smooth closed manifold $ M $ has
Externí odkaz:
https://doaj.org/article/0ec36c9d4d9642f3b552edabf81664ce
Autor:
Manseob Lee
Publikováno v:
Advances in Difference Equations, Vol 2019, Iss 1, Pp 1-12 (2019)
Abstract In the study, we consider continuum-wise expansiveness for the homoclinic class of a kind of C1 $C^{1}$-robustly expansive dynamical system. First, we show that if the homoclinic class H(p,f) $H(p, f)$, which contains a hyperbolic periodic p
Externí odkaz:
https://doaj.org/article/678092d45caf4d04a64fc2b75e8744ba
Autor:
Manseob Lee
Publikováno v:
Mathematics, Vol 8, Iss 11, p 1912 (2020)
Let f:M→M be a diffeomorphism of a finite dimension, smooth compact Riemannian manifold M. In this paper, we demonstrate that if a diffeomorphism f lies within the C1 interior of the set of all chain recurrence class-topologically stable diffeomorp
Externí odkaz:
https://doaj.org/article/48211e8164bf4676adf1d615ff2c73d7
Autor:
Manseob Lee
Publikováno v:
Mathematics, Vol 8, Iss 8, p 1232 (2020)
In this paper, we prove that for a generically C1 vector field X of a compact smooth manifold M, if a homoclinic class H(γ,X) which contains a hyperbolic closed orbit γ is measure expansive for X then H(γ,X) is hyperbolic.
Externí odkaz:
https://doaj.org/article/d787cc214137497cbf8f1f6f4d234db4
Autor:
Manseob Lee
Publikováno v:
Mathematics, Vol 7, Iss 10, p 980 (2019)
We show that if a differentiable map f of a compact smooth Riemannian manifold M is C 1 robustly positive continuum-wise expansive, then f is expanding. Moreover, C 1 -generically, if a differentiable map f of a compact smooth Riemannian manifold M i
Externí odkaz:
https://doaj.org/article/a7e185a7047f431687e175469d4922c8
Autor:
Manseob Lee
Publikováno v:
Axioms, Vol 7, Iss 1, p 18 (2018)
We show that if a C 1 generic diffeomorphism of a closed smooth two-dimensional manifold has the average shadowing property or the asymptotic average shadowing property, then it is Anosov. Moreover, if a C 1 generic vector field of a closed smooth th
Externí odkaz:
https://doaj.org/article/b14d273543e041d7b016ff3b5b103e46
Autor:
Manseob Lee, Junmi Park
Publikováno v:
Abstract and Applied Analysis, Vol 2015 (2015)
Let f be a diffeomorphism on a C∞ closed surface. In this paper, we show that if f has the C2-stably limit shadowing property, then we have the following: (i) f satisfies the Kupka-Smale condition; (ii) if P(f) is dense in the nonwandering set Ω(
Externí odkaz:
https://doaj.org/article/51bf5bff914548a0bc47976238d0515c
Autor:
Manseob Lee
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
We show that -generically, if a volume-preserving diffeomorphism has the orbital shadowing property, then the diffeomorphism is Anosov.
Externí odkaz:
https://doaj.org/article/ed2edb95406e4de18db887327e9c61e9
Autor:
Bo Han, Manseob Lee
Publikováno v:
Acta Mathematica Scientia. 43:259-288
Autor:
Manseob Lee, Jumi Oh
Publikováno v:
Journal of Dynamical and Control Systems. 29:293-318