Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Manoussakis, Yannis"'
Autor:
Bai, Yandong, Manoussakis, Yannis
Let $k$ be a positive integer. Bermond and Thomassen conjectured in 1981 that every digraph with minimum outdegree at least $2k-1$ contains $k$ vertex-disjoint cycles. It is famous as one of the one hundred unsolved problems selected in [Bondy, Murty
Externí odkaz:
http://arxiv.org/abs/1805.02999
Autor:
Foucaud, Florent, Harutyunyan, Ararat, Hell, Pavol, Legay, Sylvain, Manoussakis, Yannis, Naserasr, Reza
Publikováno v:
Discrete Applied Mathematics 229:64-81, 2017
A tropical graph $(H,c)$ consists of a graph $H$ and a (not necessarily proper) vertex-colouring $c$ of $H$. Given two tropical graphs $(G,c_1)$ and $(H,c)$, a homomorphism of $(G,c_1)$ to $(H,c)$ is a standard graph homomorphism of $G$ to $H$ that a
Externí odkaz:
http://arxiv.org/abs/1607.04777
A $c$-edge-colored multigraph has each edge colored with one of the $c$ available colors and no two parallel edges have the same color. A proper Hamiltonian cycle is a cycle containing all the vertices of the multigraph such that no two adjacent edge
Externí odkaz:
http://arxiv.org/abs/1411.5240
Autor:
Águeda, Raquel, Borozan, Valentin, Groshaus, Marina, Manoussakis, Yannis, Mendy, Gervais, Montero, Leandro
Given a $c$-edge-coloured multigraph, a proper Hamiltonian path is a path that contains all the vertices of the multigraph such that no two adjacent edges have the same colour. In this work we establish sufficient conditions for an edge-coloured mult
Externí odkaz:
http://arxiv.org/abs/1406.5376
Autor:
Borozan, Valentin, Ferrara, Michael, Fujita, Shinya, Furuya, Michitaka, Manoussakis, Yannis, Narayanan, N., Stolee, Derrick
Given $k\ge 1$, a $k$-proper partition of a graph $G$ is a partition ${\mathcal P}$ of $V(G)$ such that each part $P$ of ${\mathcal P}$ induces a $k$-connected subgraph of $G$. We prove that if $G$ is a graph of order $n$ such that $\delta(G)\ge \sqr
Externí odkaz:
http://arxiv.org/abs/1401.2696
Autor:
Foucaud, Florent, Harutyunyan, Ararat, Hell, Pavol, Legay, Sylvain, Manoussakis, Yannis, Naserasr, Reza
Publikováno v:
In Discrete Applied Mathematics 1 October 2017 229:64-81
Publikováno v:
In Discrete Mathematics August 2017 340(8):1897-1902
Autor:
Borozan, Valentin, Fujita, Shinya, Gerek, Aydin, Magnant, Colton, Manoussakis, Yannis, Montero, Leandro, Tuza, Zsolt
Publikováno v:
In Discrete Mathematics 6 September 2012 312(17):2550-2560
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We deal with three aspects of the complexity of the problem of finding a maximum matching that minimizes the number of colors in a vertex-colored graph. We first prove that it is W[2]-hard, next that it is hard to approximate in a similar way as the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::01033207b2cc433c5de2d3cadedc731c
https://hal.archives-ouvertes.fr/hal-02157745/file/MCMM.pdf
https://hal.archives-ouvertes.fr/hal-02157745/file/MCMM.pdf