Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Manoshina, A. S."'
Autor:
Gorbachev, D. V., Manoshina, A. S.
Let $K\subset\mathbb N$ and $\mathbf T(K)$ is a set of trigonometric polynomials \[ T(x)=T_0+\sum_{k\in K, k\le H}T_k\cos(2\pi kx), \qquad H>1, \] $T(x)\ge0$ for all $x$ and $T(0)=1$. Suppose that $0
Externí odkaz:
http://arxiv.org/abs/math/0312320
Autor:
Gorbachev, D. V., Manoshina, A. S.
We consider an extremum problem posed by Turan. The aim of this problem is to find a maximum mean value of 1-periodic continuous even function such that sum of Fourier coefficient modules for this function is equal to 1 and support of this function l
Externí odkaz:
http://arxiv.org/abs/math/0211291
Autor:
Gorbachev, D. V.1 dvg@uic.tula.ru, Manoshina, A. S.1 manoshin@tula.net
Publikováno v:
Mathematical Notes. Nov/Dec2004, Vol. 76 Issue 5/6, p640-652. 13p.