Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Manon Stipulanti"'
Autor:
Michel Rigo, Manon Stipulanti
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol vol. 24, no. 1, Iss Automata, Logic and Semantics (2022)
The $n$th term of an automatic sequence is the output of a deterministic finite automaton fed with the representation of $n$ in a suitable numeration system. In this paper, instead of considering automatic sequences built on a numeration system with
Externí odkaz:
https://doaj.org/article/de796d1d59a44da398bb0e040d788f8a
Publikováno v:
Aequationes mathematicae. 97:391-423
Publikováno v:
Theoretical Computer Science. 918:32-47
Publikováno v:
Developments in Language Theory ISBN: 9783031055775
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2fef44ea0c226458b1a8508abb1c382e
https://doi.org/10.1007/978-3-031-05578-2_8
https://doi.org/10.1007/978-3-031-05578-2_8
Publikováno v:
Developments in Language Theory ISBN: 9783031055775
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7eeb2e513ba27080698d53eaa23b3071
https://doi.org/10.1007/978-3-031-05578-2_20
https://doi.org/10.1007/978-3-031-05578-2_20
Publikováno v:
Theoretical Computer Science. 790:16-40
We introduce a variation of the Ziv–Lempel and Crochemore factorizations of words by requiring each factor to be a palindrome. We compute these factorizations for the Fibonacci word, and more generally, for all m-bonacci words.
Autor:
Manon Stipulanti
Publikováno v:
Theoretical Computer Science. 758:42-60
We pursue the investigation of generalizations of the Pascal triangle based on binomial coefficients of finite words. These coefficients count the number of times a finite word appears as a subsequence of another finite word. The finite words occurri
Autor:
Manon Stipulanti, Michel Rigo
Regular sequences generalize the extensively studied automatic sequences. Let $S$ be an abstract numeration system. When the numeration language $L$ is prefix-closed and regular, a sequence is said to be $S$-regular if the module generated by its $S$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::311d48b153355d6fb83caa1d6b3780fc
http://arxiv.org/abs/2103.16966
http://arxiv.org/abs/2103.16966
We consider numeration systems based on a $d$-tuple $\mathbf{U}=(U_1,\ldots,U_d)$ of sequences of integers and we define $(\mathbf{U},\mathbb{K})$-regular sequences through $\mathbb{K}$-recognizable formal series, where $\mathbb{K}$ is any semiring.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d5dfaa842ccb91779c7dc9b7e8850d3a
http://arxiv.org/abs/2006.11126
http://arxiv.org/abs/2006.11126
Publikováno v:
Discrete Mathematics. 340:862-881
This paper is about counting the number of distinct (scattered) subwords occurring in a given word. More precisely, we consider the generalization of the Pascal triangle to binomial coefficients of words and the sequence $(S(n))_{n\ge 0}$ counting th