Zobrazeno 1 - 10
of 150
pro vyhledávání: '"Mani Golparvar-Fard"'
Publikováno v:
Developments in the Built Environment, Vol 16, Iss , Pp 100247- (2023)
Effective progress monitoring is ineviTable for completing the construction of building and infrastructure projects successfully. In this digital transformation era, with the data-centric management and control approach, the effectiveness of monitori
Externí odkaz:
https://doaj.org/article/db77a76e650847b9b7e27fe635a23265
Autor:
Vedhus Hoskere, Fouad Amer, Doug Friedel, Wanxian Yang, Yu Tang, Yasutaka Narazaki, Matthew D. Smith, Mani Golparvar-Fard, Billie F. Spencer
Publikováno v:
Applied Sciences, Vol 11, Iss 2, p 520 (2021)
The tremendous success of automated methods for the detection of damage in images of civil infrastructure has been fueled by exponential advances in deep learning over the past decade. In particular, many efforts have taken place in academia and more
Externí odkaz:
https://doaj.org/article/d305c1a5927e4bec88c644b40776dc69
Autor:
Yanyu Wang, Pingbo Tang, Kaijian Liu, Jiannan Cai, Ran Ren, Jacob J. Lin, Hubo Cai, Jiansong Zhang, Nora El-Gohary, Mario Berges, Mani Golparvar Fard
Publikováno v:
Journal of Computing in Civil Engineering. 37
Publikováno v:
Journal of Computing in Civil Engineering. 36
Publikováno v:
Automation in Construction. 152:104896
Publikováno v:
Computer-Aided Civil and Infrastructure Engineering. 37:55-72
Autor:
Yanyu Wang, Pingbo Tang, Kaijian Liu, Jiannan Cai, Ran Ren, Jacob J. Lin, Hubo Cai, Jiansong Zhang, Nora El-Gohary, Mario Berges, Mani Golparvar Fard
Publikováno v:
Computing in Civil Engineering 2021.
Publikováno v:
Construction Research Congress 2022.
Autor:
Mani Golparvar-Fard, Shuai Tang
Publikováno v:
Journal of Computing in Civil Engineering. 35
This paper proposes a new method for single-worker severity level prediction from already collected site images and video clips. Onsite safety observers often assess workers’ severity level...
Publikováno v:
Journal of Construction Engineering and Management. 147
The architecture, engineering, and construction (AEC) industry perform thousands of scans each year. The majority of these point clouds are used for generating three-dimensional (3D) models...