Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Mangal, Ankita"'
Autor:
Mangal, Ankita, Holm, Elizabeth A.
The first step in constructing a machine learning model is defining the features of the data set that can be used for optimal learning. In this work we discuss feature selection methods, which can be used to build better models, as well as achieve mo
Externí odkaz:
http://arxiv.org/abs/1804.09604
Autor:
Mangal, Ankita, Holm, Elizabeth A.
Stress hotspots are regions of stress concentrations that form under deformation in polycrystalline materials. We use a machine learning approach to study the effect of preferred slip systems and microstructural features that reflect local crystallog
Externí odkaz:
http://arxiv.org/abs/1804.05924
Autor:
Mangal, Ankita, Holm, Elizabeth A.
We investigate the formation of stress hotspots in polycrystalline materials under uniaxial tensile deformation by integrating full field crystal plasticity based deformation models and machine learning techniques to gain data driven insights about m
Externí odkaz:
http://arxiv.org/abs/1711.00118
Autor:
Mangal, Ankita, Kumar, Nishant
This paper describes our approach to the Bosch production line performance challenge run by Kaggle.com. Maximizing the production yield is at the heart of the manufacturing industry. At the Bosch assembly line, data is recorded for products as they p
Externí odkaz:
http://arxiv.org/abs/1701.00705
Publikováno v:
In Atmospheric Pollution Research March 2021 12(3):195-204
Autor:
Mangal, Ankita, Holm, Elizabeth A.
Publikováno v:
In International Journal of Plasticity March 2019 114:1-14
Autor:
Mangal, Ankita, Holm, Elizabeth A.
Publikováno v:
In International Journal of Plasticity December 2018 111:122-134
Publikováno v:
In Atmospheric Research 15 November 2017 197:121-131
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Environmental Geochemistry & Health; 2021, Vol. 43 Issue 1, p621-642, 22p