Zobrazeno 1 - 10
of 92
pro vyhledávání: '"Manfred V. Golitschek"'
Autor:
Arno B. J. Kuijlaars
Publikováno v:
Journal of Approximation Theory. 90:455-456
Autor:
Manfred v. Golitschek
Publikováno v:
Mathematische Semesterberichte.
Autor:
Kuijlaars, Arno
Publikováno v:
Journal of Approximation Theory; September 1997, Vol. 90 Issue: 3 p455-456, 2p
Autor:
Manfred V. Golitschek
Publikováno v:
Journal of Approximation Theory. 181:30-42
The existence of a bound for the L ∞ -norm of the orthogonal projector onto splines, depending on the degree of splines, but independent of the mesh, was a long-standing conjecture by Carl de Boor. Finally, A. Yu. Shadrin solved it in 2001, but his
Publikováno v:
Numerische Mathematik. 93:315-331
We derive error bounds for bivariate spline interpolants which are calculated by minimizing certain natural energy norms.
Autor:
W. A. Light, Manfred V. Golitschek
Publikováno v:
Constructive Approximation. 17:1-18
The paper obtains error estimates for approximation by radial basis functions on the sphere. The approximations are generated by interpolation at scattered points on the sphere. The estimate is given in terms of the appropriate power of the fill dist
Autor:
Manfred V. Golitschek
Publikováno v:
Journal of Computational and Applied Mathematics. 119(1-2):209-221
Many important linear operators P :X→ S of a linear space X onto a subspace S of X are defined by the minimum problem ∥f− P f∥= min {∥f−u∥ : u∈ S } , f∈X, where the norm ∥·∥ on X is induced by an inner product. We study the L
Autor:
Manfred V. Golitschek
Publikováno v:
Journal of Approximation Theory. 67:337-346
LetΛ: 0 = λ0 < λ1λ < … be an infinite sequence of positive numbers, let n ϵ N and Bp(z): = Πk − 1n (z − λk − 1p)/(z + λk+1/p). Ganelius and Newman have shown that the expression εn(Λ)p = maxy ϵ R |Bp(1 + iy)| is the approximation i
Autor:
Siegel, Jonathan W.1 (AUTHOR) jus1949@psu.edu, Xu, Jinchao1 (AUTHOR)
Publikováno v:
Foundations of Computational Mathematics. Apr2024, Vol. 24 Issue 2, p481-537. 57p.
Autor:
Manfred V. Golitschek
Publikováno v:
Multivariate Approximation and Splines ISBN: 9783034898089
Let U ⊂ C(D) be an arbitrary n-dimensional linear subspace of continuous functions on a compact set D ⊂ ℝS. We construct interpolation operators L : C(D) → U which have an operator norm ≥ √n — 1.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::19f1a4907c2baebb0149275fd832419a
https://doi.org/10.1007/978-3-0348-8871-4_7
https://doi.org/10.1007/978-3-0348-8871-4_7