Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Mandar Chandorkar"'
Publikováno v:
Space Weather: The International Journal of Research and Applications
Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2018, 16 (11), pp.1882-1896. ⟨10.1029/2018sw001898⟩
Space Weather, 16(11), 1882-1896
Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2018, 16 (11), pp.1882-1896. ⟨10.1029/2018sw001898⟩
Space Weather, 16(11), 1882-1896
International audience; In this study, we present a method that combines a Long Short-Term Memory (LSTM) recurrent neural network with a Gaussian Process (GP) model to provide up to 6-hour ahead probabilistic forecasts of the Dst geomagnetic index. T
Publikováno v:
Space Weather, 15(8), 1004-1019
We present a methodology for generating probabilistic predictions for the Disturbance Storm Time(Dst) geomagnetic activity index. We focus on the One Step Ahead prediction task and use the OMNI hourly resolution data to build our models. Our proposed
Publikováno v:
Space Weather, 14(11), 982-992
Space Weather
Space Weather
We present the first study of the uncertainties associated with radiation belt simulations, performed in the standard quasi-linear diffusion framework. In particular, we estimate how uncertainties of some input parameters propagate through the nonlin
Autor:
Livia R. Alves, Vassilis Angelopoulos, Daniel N. Baker, Ramkumar Bala, Michael Balikhin, Jacob Bortnik, Richard Boynton, Enrico Camporeale, Algo Carè, Mandar Chandorkar, Xiangning Chu, Giuseppe Consolini, FLARECAST Consortium, Véronique Delouille, Richard E. Denton, Mike Hapgood, Verena Heidrich-Meisner, Stefan J. Hofmeister, George B. Hospodarsky, Paulo R. Jauer, Jay R. Johnson, Shrikanth G. Kanekal, Adam Kellerman, Craig A. Kletzing, Daiki Koga, Alisson Dal Lago, Zi-Qiang Lang, Wen Li, Marco Loog, Qianli Ma, Benjamin Mampaey, Anna M. Massone, Claudia Medeiros, Michele Piana, Geoffrey D. Reeves, Patricia Reiff, Martin A. Reiss, Yuri Y. Shprits, Ligia A. Da Silva, Vitor M. Souza, Harlan E. Spence, Maria Spasojevic, Manuela Temmer, Richard M. Thorne, Astrid Veronig, Luis E.A. Vieira, Hua-Liang Wei, Robert F. Wimmer-Schweingruber, Simon Wing, Xiaojia Zhang, Irina S. Zhelavskaya
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d22a55cc29aa44d11cd7640b6c8afec3
https://doi.org/10.1016/b978-0-12-811788-0.09990-x
https://doi.org/10.1016/b978-0-12-811788-0.09990-x
Autor:
Mandar Chandorkar, Enrico Camporeale
In this chapter, we give the reader an in-depth view into building of probabilistic forecasting models for geomagnetic time series using the Gaussian process methodology outlined in the previous chapters. We highlight design decisions and practical i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::91e3d16dd1937b4d35303f27d42a286a
https://doi.org/10.1016/b978-0-12-811788-0.00009-3
https://doi.org/10.1016/b978-0-12-811788-0.00009-3
Publikováno v:
SSCI
We propose FS-Scala, a flexible and modular Scala based implementation of the Fixed Size Least Squares Support Vector Machine (FS-LSSVM) for large data sets. The framework consists of a set of modules for (gradient and gradient free) optimization, mo