Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Mandal, Amrita"'
Autor:
Mandal, Amrita, Sen, Ujjwal
We study the response of spreading behavior, of two-dimensional discrete-time quantum walks, to glassy disorder in the jump length. We consider different discrete probability distributions to mimic the disorder, and three types of coin operators, viz
Externí odkaz:
http://arxiv.org/abs/2312.16076
Autor:
Mandal, Amrita, Adhikari, Bibhas
Publikováno v:
Linear Algebra and its Applications, 2024
We propose a graph theoretic approach to determine trace of product of two permutation matrices through a weighted digraph representation of the permutation matrices. Consequently, we derive trace-zero doubly stochastic (DS) matrices of order $5$ who
Externí odkaz:
http://arxiv.org/abs/2311.06810
Autor:
Mandal, Amrita, Adhikari, Bibhas
Publikováno v:
Linear Algebra and its Applications 654, 102-124 (2022)
Orthogonal matrices which are linear combinations of permutation matrices have attracted enormous attention in quantum information and computation. In this paper, we provide a complete parametric characterization of all complex, real and rational ort
Externí odkaz:
http://arxiv.org/abs/2303.06467
In this article, we undertake a detailed study of the limiting behavior of a three-state discrete-time quantum walk on one dimensional lattice with generalized Grover coins. Two limit theorems are proved and consequently we show that the quantum walk
Externí odkaz:
http://arxiv.org/abs/2204.05625
Autor:
Mandal, Amrita, Adhikari, Bibhas
Publikováno v:
In Linear Algebra and Its Applications 1 January 2025 704:340-360
Localization phenomena of quantum walks makes the propagation dynamics of a walker strikingly different from that corresponding to classical random walks. In this paper, we study the localization phenomena of four-state discrete-time quantum walks on
Externí odkaz:
http://arxiv.org/abs/2103.00515
In this paper we extend the study of three state lively quantum walks on cycles by considering the coin operator as a linear sum of permutation matrices, which is a generalization of the Grover matrix. First we provide a complete characterization of
Externí odkaz:
http://arxiv.org/abs/2003.12955
This paper is devoted to the study of eigenvalue region of the doubly stochastic matrices which are also permutative, that is, each row of such a matrix is a permutation of any other row. We call these matrices as permutative doubly stochastic (PDS)
Externí odkaz:
http://arxiv.org/abs/1910.01829
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mandal, Amrita, Adhikari, Bibhas
Publikováno v:
In Linear Algebra and Its Applications 1 December 2022 654:102-124