Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Mancho, Ana M."'
We develop a new quantifier for forward time uncertainty for trajectories that are solutions of models generated from data sets. Our uncertainty quantifier is defined on the phase space in which the trajectories evolve and we show that it has a rich
Externí odkaz:
http://arxiv.org/abs/2103.05439
This two-part paper aims to provide a Lagrangian perspective of the final southern warming in spring of 2002, during which the stratospheric polar vortex (SPV) experienced a unique splitting. We approach the subject from a dynamical systems viewpoint
Externí odkaz:
http://arxiv.org/abs/1811.09912
The present two-part paper provides a Lagrangian perspective of the final southern warming in 2002, during which the stratospheric polar vortex (SPV) experienced a unique splitting. Part I focuses on the understanding of fundamental processes for fil
Externí odkaz:
http://arxiv.org/abs/1811.09888
Publikováno v:
International Journal of Bifurcation and Chaos 26, 1630036 (2016)
In this paper we introduce a new technique for depicting the phase portrait of stochastic differential equations. Following previous work for deterministic systems, we represent the phase space by means of a generalization of the method of Lagrangian
Externí odkaz:
http://arxiv.org/abs/1705.11074
Publikováno v:
International Journal of Bifurcation and Chaos 25 (2015) 1550184-1-18
In this paper we prove the existence of a chaotic saddle for a piecewise linear map of the plane, referred to as the Lozi map. We study the Lozi map in its orientation and area preserving version. First, we consider the autonomous version of the Lozi
Externí odkaz:
http://arxiv.org/abs/1705.11059
Publikováno v:
Communications in Nonlinear Science and Numerical Simulation 27 (1-3) (2015) 40-51
In this paper we generalize the method of Lagrangian descriptors to two dimensional, area preserving, autonomous and nonautonomous discrete time dynamical systems. We consider four generic model problems--a hyperbolic saddle point for a linear, area-
Externí odkaz:
http://arxiv.org/abs/1705.11057
Autor:
Lopesino, Carlos, Balibrea-Iniesta, Francisco, García-Garrido, Víctor J., Wiggins, Stephen, Mancho, Ana M.
Publikováno v:
International Journal of Bifurcation and Chaos, 27, 1730001 (2017)
This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigourous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The de
Externí odkaz:
http://arxiv.org/abs/1705.10213
Publikováno v:
International Journal of Bifurcation and Chaos, 25(12) (2015), 1550172
In this paper we analyze chaotic dynamics for two dimensional nonautonomous maps through the use of a nonautonomous version of the Conley-Moser conditions given previously. With this approach we are able to give a precise definition of what is meant
Externí odkaz:
http://arxiv.org/abs/1705.10216
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Curbelo, Jezabel, Mancho, Ana M.
Publikováno v:
Physics of Fluids 26, 016602 (2014)
We explore the instabilities developed in a fluid in which viscosity depends on temperature. In particular, we consider a dependency that models a very viscous (and thus rather rigid) lithosphere over a convecting mantle. To this end, we study a 2D c
Externí odkaz:
http://arxiv.org/abs/1306.2921