Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Manasi Kumari Sahukar"'
Publikováno v:
Notes on Number Theory and Discrete Mathematics. 26:149-159
Autor:
Manasi Kumari Sahukar, G. K. Panda
Publikováno v:
Glasnik Matematicki. 54:255-270
Autor:
G. K. Panda, Manasi Kumari Sahukar
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 51:681-696
Only two balancing numbers $$B_1=1$$ and $$B_3=35$$ are one away from a perfect powers. Furthermore, each balancing-like sequence has at most three terms which are one away from perfect squares.
Autor:
Manasi Kumari Sahukar, G. K. Panda
Publikováno v:
Proceedings - Mathematical Sciences. 130
In this paper, we discuss some properties of Euler totient function of associated Pell numbers which are repdigits in base 10.
Publikováno v:
Glasnik matematički
Volume 54
Issue 2
Volume 54
Issue 2
In this paper, we deal with the Brocard-Ramanujan-type equations (A_{n_1}A_{n_2}cdots A_{n_k}pm 1=A_m) or (G_m) or (G_m^2) where ({A_n}_{ngeq0}) and ({G_m}_{mgeq 0}) are either balancing-like sequences or associated balancing-like sequences.
Publikováno v:
Proceedings - Mathematical Sciences. 128
In this study, the diophantine equations \(x^2 -32B_nxy-32y^2 =\pm 32^{r}\), \(x^4 -32B_nxy-32y^2 =\pm 32^{r}\) and \(x^2 -32B_nxy-32y^4 =\pm 32^{r}\) are considered and determined when these equations have positive integer solutions. Moreover, all p
Autor:
Manasi kumari Sahukar, Panda, G. K.
Publikováno v:
Scopus-Elsevier
Two inequalities involving the Euler totient function and the sum of the $k$-th powers of the divisors of balancing numbers are explored.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ca730dd69acbccafdd1166bc95712e8
http://www.scopus.com/inward/record.url?eid=2-s2.0-85052069054&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-85052069054&partnerID=MN8TOARS