Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Malusà, Alessandro"'
Publikováno v:
Geom. Dedicata 217 (2023), no. 5, paper no. 94
Let $G$ be a compact Lie group. We study a class of Hamiltonian $(G \times S^{1})$-manifolds decorated with a function $s$ with certain equivariance properties, under conditions on the $G$-action which we call of (semi-)linear type. In this context,
Externí odkaz:
http://arxiv.org/abs/2305.15651
Publikováno v:
Pacific J. Math. 329 (2024) 1-38
We provide a new general scheme for the geometric quantisation of $\operatorname{Sp}(1)$-symmetric hyper-K\"ahler manifolds, considering Hilbert spaces of holomorphic sections with respect to the complex structures in the hyper-K\"ahler 2-sphere. Und
Externí odkaz:
http://arxiv.org/abs/2111.03584
Publikováno v:
Journal of Symplectic Geometry, Vol. 20, No. 6 (2022), pp. 1215-1253
We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\"{a}hler quantisation, with polarisations
Externí odkaz:
http://arxiv.org/abs/2012.15630
We explore extensions to $\operatorname{SL}(n,\mathbb{C})$-Chern-Simons theory of some results obtained for $\operatorname{SU}(n)$-Chern-Simons theory via the asymptotic properties of the Hitchin connection and its relation to Toeplitz operators deve
Externí odkaz:
http://arxiv.org/abs/1805.04868
We provide a Geometric Quantisation formulation of the AJ-conjecture for the Teichm\"{u}ller TQFT, and we prove it in detail in the case of the knot complements of $4_{1}$ and $5_2$. The conjecture states that the level-$N$ Andersen-Kashaev invariant
Externí odkaz:
http://arxiv.org/abs/1711.11522
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rodak, Paweł, Malusà, Alessandro
Publikováno v:
Biography, 2019 Jan 01. 42(1), 111-118.
Externí odkaz:
https://www.jstor.org/stable/26755250
Autor:
Rodak, Paweł (AUTHOR), Malusà, Alessandro Nicola (AUTHOR), Malusà, Paweł Rodak Translated by Alessandro Nicola (AUTHOR)
Publikováno v:
Biography: An Interdisciplinary Quarterly. 2023, Vol. 46 Issue 1, p71-75. 5p.
Publikováno v:
Biography, 2017 Oct 01. 40(4), 641-648.
Externí odkaz:
https://www.jstor.org/stable/26530443
Publikováno v:
Journal of Symplectic Geometry. 20:1215-1253
We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\"{a}hler quantisation, with polarisations