Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Maltese, David"'
Autor:
Maltese, David, Ogabi, Chokri
In this article, we study some anisotropic singular perturbations for a class of linear elliptic problems. A uniform estimates for conforming $Q_1$ finite element method are derived, and some other results of convergence and regularity for the contin
Externí odkaz:
http://arxiv.org/abs/2305.12781
Autor:
Eymard, Robert, Maltese, David
We prove the convergence of an incremental projection numerical scheme for the time-dependent incompressible Navier--Stokes equations, without any regularity assumption on the weak solution. The velocity and the pressure are discretised in conforming
Externí odkaz:
http://arxiv.org/abs/2302.06240
The present paper addresses the convergence of a first order in time incremental projection scheme for the time-dependent incompressible Navier-Stokes equations to a weak solution, without any assumption of existence or regularity assumptions on the
Externí odkaz:
http://arxiv.org/abs/2207.09695
We approximate the solution to some linear and degenerate quasi-linear problem involving a linear elliptic operator (like the semi-discrete in time implicit Euler approximation of Richards and Stefan equations) with measure right-hand side and hetero
Externí odkaz:
http://arxiv.org/abs/2205.07698
Autor:
Maltese, David, Ogabi, Chokri
In this article, we deal with some problems involving a class of singularly perturbed elliptic operator. We prove the asymptotic preserving of a general Galerkin method associated to a semilinear problem. We use a particular Galerkin approximation to
Externí odkaz:
http://arxiv.org/abs/2201.11977
Autor:
Maltese, David
Dans cette thèse, nous nous intéressons à l’analyse mathématique théorique et numérique des équations deNavier-Stokes compressibles en régime barotrope. La plupart des travaux présentés ici combinent desméthodes d’analyse des équation
Externí odkaz:
http://www.theses.fr/2016TOUL0005/document
Autor:
Maltese, David, Ogabi, Chokri
Publikováno v:
Applicable Analysis; Sep2024, Vol. 103 Issue 14, p2625-2646, 22p
We prove in this paper the convergence of the Marker and Cell (MAC) scheme for the discretization of the steady state compressible and isentropic Navier-Stokes equations on two or three-dimensional Cartesian grids. Existence of a solution to the sche
Externí odkaz:
http://arxiv.org/abs/1607.01968
Autor:
Maltese, David, Michalek, Martin, Mucha, Piotr B., Novotny, Antonin, Pokorny, Milan, Zatorska, Ewelina
We consider the compressible Navier-Stokes system with variable entropy. The pressure is a nonlinear function of the density and the entropy/potential temperature which, unlike in the Navier-Stokes-Fourier system, satisfies only the transport equatio
Externí odkaz:
http://arxiv.org/abs/1603.08965
We derive an a priori error estimate for the numerical solution obtained by time and space discretization by the finite volume/finite element method of the barotropic Navier--Stokes equations. The numerical solution on a convenient polyhedral domain
Externí odkaz:
http://arxiv.org/abs/1508.06432