Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Mallows permutations"'
Autor:
Dubach, Victor
We study classical pattern counts in Mallows random permutations with parameters $(n,q_n)$, as $n\to\infty$. We focus on three different regimes for the parameter $q = q_n$. When $n^{3/2}(1-q)\to0$, we use coupling techniques to prove that pattern co
Externí odkaz:
http://arxiv.org/abs/2410.17228
Autor:
Gladkich, Alexey, Peled, Ron
Publikováno v:
The Annals of Probability, 2018 Mar 01. 46(2), 1114-1169.
Externí odkaz:
https://www.jstor.org/stable/26402376
Autor:
He, Jimmy
Fix $q\neq 1$, and sample $w\in S_n$ from the Mallows measure. We study the distribution of $C_i(w)$, the number of $i$-cycles, as $n$ grows large. When $q<1$, they are jointly Gaussian, and this more or less follows from known ideas, but the regime
Externí odkaz:
http://arxiv.org/abs/2112.09789
We introduce the random graph $\mathcal{P}(n,q)$ which results from taking the union of two paths of length $n\geq 1$, where the vertices of one of the paths have been relabelled according to a Mallows permutation with parameter $0
Externí odkaz:
http://arxiv.org/abs/2108.04786
Publikováno v:
The Annals of Probability, 2020 Jan 01. 48(1), 343-379.
Externí odkaz:
https://www.jstor.org/stable/26922917
Autor:
Jin, Ke
Publikováno v:
The Annals of Applied Probability, 2019 Jun 01. 29(3), 1311-1355.
Externí odkaz:
https://www.jstor.org/stable/26729303
Autor:
Banerjee, Naya, Jin, Ke
The Mallows measure is measure on permutations which was introduced by Mallows in connection with ranking problems in statistics. Under this measure, the probability of a permutation $\pi$ is proportional to $q^{Inv(\pi)}$ where $q$ is a positive par
Externí odkaz:
http://arxiv.org/abs/1908.05246
Publikováno v:
Can. J. Math.-J. Can. Math. 73 (2021) 1531-1555
We show that the Mallows measure on permutations of $1,\ldots,n$ arises as the law of the unique Gale-Shapley stable matching of the random bipartite graph conditioned to be perfect, where preferences arise from a total ordering of the vertices but a
Externí odkaz:
http://arxiv.org/abs/1802.07142
Publikováno v:
Ann. Probab. 48(1): 343-379 (January 2020)
We use the Mallows permutation model to construct a new family of stationary finitely dependent proper colorings of the integers. We prove that these colorings can be expressed as finitary factors of i.i.d. processes with finite mean coding radii. Th
Externí odkaz:
http://arxiv.org/abs/1706.09526
Autor:
Jin, Ke
The Mallows measure is a probability measure on $S_n$ where the probability of a permutation $\pi$ is proportional to $q^{l(\pi)}$ with $q > 0$ being a parameter and $l(\pi)$ the number of inversions in $\pi$. We show the convergence of the random em
Externí odkaz:
http://arxiv.org/abs/1702.00140