Zobrazeno 1 - 10
of 171
pro vyhledávání: '"Malliaris M"'
Autor:
Malliaris, M., Shelah, S.
Dividing asks about inconsistency along indiscernible sequences. In order to study the finer structure of simple theories without much dividing, the authors recently introduced shearing, which essentially asks about inconsistency along generalized in
Externí odkaz:
http://arxiv.org/abs/2109.12642
Autor:
Malliaris, M., Shelah, S.
Publikováno v:
Model Th. 3 (2024) 449-464
We develop a family of simple rank one theories built over quite arbitrary sequences of finite hypergraphs. (This extends an idea from the recent proof that Keisler's order has continuum many classes, however, the construction does not require famili
Externí odkaz:
http://arxiv.org/abs/2108.05526
Autor:
Malliaris, M., Shelah, S.
We find a strong separation between two natural families of simple rank one theories in Keisler's order: the theories $T_\mathfrak{m}$ reflecting graph sequences, which witness that Keisler's order has the maximum number of classes, and the theories
Externí odkaz:
http://arxiv.org/abs/2108.05314
Autor:
Malliaris, M., Shelah, S.
This is a short expository account of the regularity lemma for stable graphs proved by the authors, with some comments on the model theoretic context, written for a general logical audience.
Comment: 6 pages. Paper E98
Comment: 6 pages. Paper E98
Externí odkaz:
http://arxiv.org/abs/2012.09794
Autor:
Malliaris, M., Shelah, S.
Publikováno v:
In Annals of Pure and Applied Logic January 2024 175(1) Part B
Autor:
Malliaris, M., Shelah, S.
Solving a decades-old problem we show that Keisler's 1967 order on theories has the maximum number of classes. The theories we build are simple unstable with no nontrivial forking, and reflect growth rates of sequences which may be thought of as dens
Externí odkaz:
http://arxiv.org/abs/1906.10241
Autor:
MALLIARIS, M., SHELAH, S.
Publikováno v:
The Bulletin of Symbolic Logic, 2021 Dec 01. 27(4), 415-425.
Externí odkaz:
https://www.jstor.org/stable/27107135
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Malliaris, M., Shelah, S.
This paper builds model-theoretic tools to detect changes in complexity among the simple theories. We develop a generalization of dividing, called shearing, which depends on a so-called context c. This leads to defining c-superstability, a syntactica
Externí odkaz:
http://arxiv.org/abs/1810.09604
Autor:
Malliaris, M., Shelah, S.
We construct a countable simple theory which, in Keisler's order, is strictly above the random graph (but "barely so") and also in some sense orthogonal to the building blocks of the recently discovered infinite descending chain. As a result we prove
Externí odkaz:
http://arxiv.org/abs/1804.03254