Zobrazeno 1 - 10
of 91
pro vyhledávání: '"Malicki, Piotr"'
Autor:
Malicki, Piotr
Publikováno v:
In Journal of Pure and Applied Algebra June 2024 228(6)
Autor:
Malicki, Piotr, Skowroński, Andrzej
We describe the representation theory of finitely generated indecomposable modules over artin algebras which do not lie on cycles of indecomposable modules involving homomorphisms from the infinite Jacobson radical of the module category.
Commen
Commen
Externí odkaz:
http://arxiv.org/abs/1905.04908
Autor:
Malicki, Piotr, Skowroński, Andrzej
We describe the structure and homological properties of arbitrary generalized standard Auslander-Reiten components of artin algebras. In particular, we prove that for all but finitely many indecomposable modules in such components the Euler character
Externí odkaz:
http://arxiv.org/abs/1802.02773
Publikováno v:
Journal of Pure and Applied Algebra 219 (2015), no. 5, 1761--1799
We solve a long standing open problem concerning the structure of finite cycles in the category mod A of finitely generated modules over an arbitrary artin algebra A, that is, the chains of homomorphisms $M_0 \stackrel{f_1}{\rightarrow} M_1 \to \cdot
Externí odkaz:
http://arxiv.org/abs/1306.0929
Publikováno v:
Central European Journal of Mathematics 12 (2014), no. 1, 39--45
We prove that the number of terms in the middle of an almost split sequence in the module category of a cycle-finite artin algebra is bounded by 5.
Externí odkaz:
http://arxiv.org/abs/1302.2497
Autor:
Malicki, Piotr, Skowroński, Andrzej
Publikováno v:
In Journal of Algebra 15 January 2019 518:1-39
Publikováno v:
Algebras, Quivers and Representations. The Abel Symposium 2011. Abel Symposia 8, Springer-Verlag Berlin Heidelberg, 2013, 209--252
We describe the structure of module categories of finite dimensional algebras over an algebraically closed field for which the cycles of nonzero nonisomorphisms between indecomposable finite dimensional modules are finite (do not belong to the infini
Externí odkaz:
http://arxiv.org/abs/1203.3397
Publikováno v:
The Quarterly Journal of Mathematics 64 (2013), 1141-1160 (title changed)
We give a complete description of finitely generated modules over artin algebras which are not the middle of a short chain of modules, using injective and tilting modules over hereditary artin algebras.
Externí odkaz:
http://arxiv.org/abs/1112.3464
Publikováno v:
Mathematische Zeitschrift 273 (2013), no. 1-2, 19-27
We provide an affirmative answer for the question raised almost twenty years ago concerning the characterization of tilted artin algebras by the existence of a sincere finitely generated module which is not the middle of a short chain.
Externí odkaz:
http://arxiv.org/abs/1112.2960
Publikováno v:
Journal of the London Mathematical Society (2) 85 (2012), no. 1, 245-268
We describe the structure of semi-regular Auslander-Reiten components of artin algebras without external short paths in the module category. As an application we give a complete description of self-injective artin algebras whose Auslander-Reiten quiv
Externí odkaz:
http://arxiv.org/abs/1112.0852