Zobrazeno 1 - 10
of 114
pro vyhledávání: '"Malamud, M. M."'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Budyka, V. S.1 (AUTHOR) budyka.vik@gmail.com, Malamud, M. M.2,3 (AUTHOR), Pokrovskii, I. L.4 (AUTHOR)
Publikováno v:
Mathematical Notes. Dec2023, Vol. 114 Issue 5/6, p1060-1066. 7p.
We consider symmetric operators of the form $S := A\otimes I_{\mathfrak T} + I_{\mathfrak H} \otimes T$ where $A$ is symmetric and $T = T^*$ is (in general) unbounded. Such operators naturally arise in problems of simulating point contacts to reservo
Externí odkaz:
http://arxiv.org/abs/1710.07525
In this paper we prove that for an arbitrary pair $\{T_1,T_0\}$ of contractions on Hilbert space with trace class difference, there exists a function $\boldsymbol\xi$ in $L^1({\Bbb T})$ (called a spectral shift function for the pair $\{T_1,T_0\}$ ) s
Externí odkaz:
http://arxiv.org/abs/1705.07225
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Malamud, M. M., Oridoroga, L. L.
The paper is concerned with the completeness problem of root functions of general boundary value problems for first order systems of ordinary differential equations. Namely, we introduce and investigate the class of \emph{weakly regular boundary cond
Externí odkaz:
http://arxiv.org/abs/1109.3683
Autor:
Limanskii, D. V., Malamud, M. M.
Publikováno v:
D.V. Limanskii, M.M. Malamud, Elliptic and weakly coercive systems of operators in Sobolev spaces Sbornik: Mathematics, 199: 11, 1649-1686 (2008)
It is known that an elliptic system $\{P_j(x,D)\}_1^N$ of order $l$ is weakly coercive in $\overset{\circ}{W}\rule{0pt}{2mm}^l_\infty(\mathbb R^n)$, that is, all differential monomials of order $\le l-1$ on $C_0^\infty(\mathbb R^n)$-functions are sub
Externí odkaz:
http://arxiv.org/abs/0904.2922
Autor:
Domanov, I. Yu., Malamud, M. M.
Let $J_k^\alpha$ be a real power of the integration operator $J_k$ defined on Sobolev space $W_p^k[0,1]$. We investigate the spectral properties of the operator $A_k=\bigoplus_{j=1}^n \lambda_j J_k^\alpha$ defined on $\bigoplus_{j=1}^n W_p^k[0,1]$. N
Externí odkaz:
http://arxiv.org/abs/0903.4069
Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maxi
Externí odkaz:
http://arxiv.org/abs/math-ph/0610088
Autor:
Karabash, I. M., Malamud, M. M.
Publikováno v:
Operators and Matrices 1 (2007), no. 3, pp. 301-368
The indefinite Sturm-Liouville operator $A = (\sgn x)(-d^2/dx^2+q(x))$ is studied. It is proved that similarity of $A$ to a selfadjoint operator is equivalent to integral estimates of Cauchy integrals. Also similarity conditions in terms of Weyl func
Externí odkaz:
http://arxiv.org/abs/math/0610087