Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Malabika Pramanik"'
Autor:
Jongchon Kim, Malabika Pramanik
Publikováno v:
Analysis & PDE. 15:753-794
Given any finite direction set $\Omega$ of cardinality $N$ in Euclidean space, we consider the maximal directional Hilbert transform $H_{\Omega}$ associated to this direction set. Our main result provides an essentially sharp uniform bound, depending
Autor:
Suresh Eswarathasan, Malabika Pramanik
Publikováno v:
International Mathematics Research Notices. 2022:1538-1600
Given a compact Riemannian manifold $(M, g)$ without boundary, we estimate the Lebesgue norm of Laplace–Beltrami eigenfunctions when restricted to a wide variety of subsets $\Gamma $ of $M$. The sets $\Gamma $ that we consider are Borel measurable,
Autor:
Andreas Seeger, Malabika Pramanik
Publikováno v:
The Journal of Geometric Analysis. 31:6725-6765
We prove a sharp $$L^p$$ -Sobolev regularity result for a class of generalized Radon transforms for families of curves in a three-dimensional manifold, with folding canonical relations. The proof relies on decoupling inequalities by Wolff and by Bour
Autor:
Loredana Lanzani, Malabika Pramanik
The fundamental role of the Cauchy transform in harmonic and complex analysis has led to many different proofs of its $L^2$ boundedness. In particular, a famous proof of Melnikov-Verdera [18] relies upon an iconic symmetrization identity of Melnikov
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d93b6d15fb47c2e536f6b85162227b5a
https://hdl.handle.net/11585/919422
https://hdl.handle.net/11585/919422
Autor:
Suresh Eswarathasan, Malabika Pramanik
Publikováno v:
Geometric Aspects of Harmonic Analysis ISBN: 9783030720575
Let (M, g) denote a compact Riemannian manifold without boundary. This article is an announcement of Lebesgue norm estimates of Laplace–Beltrami eigenfunctions of M when restricted to certain fractal subsets Γ of M. The proofs in their entirety ap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3176aefebeeecd1bfd0aa746c3229310
https://doi.org/10.1007/978-3-030-72058-2_10
https://doi.org/10.1007/978-3-030-72058-2_10
Publikováno v:
Springer Optimization and Its Applications ISBN: 9783030618865
The pattern avoidance problem seeks to construct a set \(X\subset \operatorname {\mathrm {\mathbf {R}}}^d\) with large dimension that avoids a prescribed pattern. Examples of such patterns include three-term arithmetic progressions (solutions to x1
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::09323981e88cc9ecdec851e2190be7cf
https://doi.org/10.1007/978-3-030-61887-2_4
https://doi.org/10.1007/978-3-030-61887-2_4
Autor:
Alexander Nagel, Malabika Pramanik
For appropriate domains $\Omega_{1}, \Omega_{2}$ we consider mappings $\Phi_{\mathbf A}:\Omega_{1}\to\Omega_{2}$ of monomial type. We obtain an orthogonal decomposition of the Bergman space $\mathcal A^{2}(\Omega_{1})$ into finitely many closed subsp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::60087760f1b420dd1195b86168f682a3
http://arxiv.org/abs/2002.02915
http://arxiv.org/abs/2002.02915
Publikováno v:
Mathematische Zeitschrift. 289:1033-1057
Consider the discrete maximal function acting on finitely supported functions on the integers, $$\begin{aligned} \mathcal {C}_\Lambda f(n) := \sup _{\lambda \in \Lambda } \left| \sum _{p \in {\pm } \mathbb P} f(n-p) \log |p| \frac{e^{2\pi i \lambda p
Publikováno v:
Bulletin of the London Mathematical Society. 49:676-689
Let 1
Publikováno v:
Mathematical Research Letters. 24:347-362